9,565 research outputs found

    Magnetic Field Rotations in the Solar Wind at Kinetic Scales

    Full text link
    The solar wind magnetic field contains rotations at a broad range of scales, which have been extensively studied in the MHD range. Here we present an extension of this analysis to the range between ion and electron kinetic scales. The distribution of rotation angles was found to be approximately log-normal, shifting to smaller angles at smaller scales almost self-similarly, but with small, statistically significant changes of shape. The fraction of energy in fluctuations with angles larger than α\alpha was found to drop approximately exponentially with α\alpha, with e-folding angle 9.89.8^\circ at ion scales and 0.660.66^\circ at electron scales, showing that large angles (α>30\alpha > 30^\circ) do not contain a significant amount of energy at kinetic scales. Implications for kinetic turbulence theory and the dissipation of solar wind turbulence are discussed

    Effective Actions, Boundaries and Precision Calculations of Casimir Energies

    Full text link
    We perform the matching required to compute the leading effective boundary contribution to the QED lagrangian in the presence of a conducting surface, once the electron is integrated out. Our result resolves a confusion in the literature concerning the interpretation of the leading such correction to the Casimir energy. It also provides a useful theoretical laboratory for brane-world calculations in which kinetic terms are generated on the brane, since a lot is known about QED near boundaries.Comment: 5 pages. revtex; Added paragraphs describing finite-conductivity effects and effects due to curvatur

    The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    Get PDF
    We describe the design of a correlator system for ground and space-based VLBI. The correlator contains unique signal processing functions: flexible LO frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate digital signal-processing techniques to allow correlation of signals at different sample rates; and a digital filter for very high resolution cross-power spectra. It also includes autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation.Comment: 44 pages, 13 figure

    Comment on Higgs Inflation and Naturalness

    Get PDF
    We rebut the recent claim (arXiv:0912.5463) that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Lambda ~ Mp/xi. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.Comment: 5 pages, 1 figure V3: Journal Versio

    A year in the life of GW170817: the rise and fall of a structured jet from a binary neutron star merger

    Get PDF
    We present the results of our year-long afterglow monitoring of GW170817, the first binary neutron star (NS) merger detected by advanced LIGO and advanced Virgo. New observations with the Australian Telescope Compact Array (ATCA) and the Chandra X-ray Telescope were used to constrain its late-time behavior. The broadband emission, from radio to X-rays, is well-described by a simple power-law spectrum with index ~0.585 at all epochs. After an initial shallow rise ~t^0.9, the afterglow displayed a smooth turn-over, reaching a peak X-ray luminosity of ~5e39 erg/s at 160 d, and has now entered a phase of rapid decline ~t^(-2). The latest temporal trend challenges most models of choked jet/cocoon systems, and is instead consistent with the emergence of a relativistic structured jet seen at an angle of ~22 deg from its axis. Within such model, the properties of the explosion (such as its blastwave energy E_K~2E50 erg, jet width theta_c~4 deg, and ambient density n~3E-3 cm^(-3)) fit well within the range of properties of cosmological short GRBs.Comment: 11 pages, 8 figures, 2 tables, MNRAS, in press. Final version, minor changes only relative to original submission dated 21 August 201

    D-Brane Chemistry

    Full text link
    We study several different kinds of bound states built from D-branes and orientifolds. These states are to atoms what branonium - the bound state of a brane and its anti-brane - is to positronium, inasmuch as they typically involve a light brane bound to a much heavier object with conserved charges which forbid the system's decay. We find the fully relativistic motion of a probe Dp'-brane in the presence of source Dp-branes is integrable by quadratures. Keplerian conic sections are obtained for special choices for p and p' and the systems are shown to be equivalent to nonrelativistic systems. Their quantum behaviour is also equivalent to the corresponding non-relativistic limit. In particular the p=6, p'=0 case is equivalent to a non-relativistic dyon in a magnetic monopole background, with the trajectories in the surface of a cone. We also show that the motion of the probe branes about D6-branes in IIA theory is equivalent to the motion of the corresponding probes in the uplift to M-theory in 11 dimensions, for which there are no D6-branes but their fields are replaced by a particular Taub-NUT geometry. We further discuss the interactions of D-branes and orientifold planes having the same dimension. this system behaves at large distances as a brane-brane system but at shorter distances it does not have the tachyon instability.Comment: ref. added and typos correcte

    On non-perturbative corrections to the Kahler potential

    Get PDF
    We present the results of a detailed investigation into the consequences of adding specific string motivated non-perturbative corrections to the usual tree level Kahler potential in dilaton dominated scenarios. The success of the model is judged through our ability to obtain a realistic VEV for the dilaton < Re S > ~ 2, corresponding to the true minima of the scalar potential and being associated with a reasonable value for the SUSY breaking scale via the gravitino mass. The status of the so-called moduli problem is also reviewed in each of the ansatze studied. Those include previous proposals made in the context of both the chiral and the linear multiplet formalisms to describe gaugino condensation, and a new ansatz which shows explicitly the equivalence between the two.Comment: 11 pages, LaTex, uses psfig.sty with 4 figure

    Inflation in Realistic D-Brane Models

    Full text link
    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-KKLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dlnkdn_s/d\ln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters combining successful inflation with strong warping, as needed for consistency of the approximation

    SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties

    Full text link
    In this paper we present calculations of the SO(5) quantum rotor theory of high-Tc_{c} superconductivity in Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in three-dimensional lattice to obtain formulas for critical lines, free energy, entropy and specific heat and present temperature dependences of these quantities for different values of magnetic field. Our results are in qualitative agreement with relevant experiments on high-Tc_{c} cuprates.Comment: 4 pages, 2 figures, to appear in Phys. Rev. B, see http://prb.aps.or

    On Bouncing Brane-Worlds, S-branes and Branonium Cosmology

    Full text link
    We present several higher-dimensional spacetimes for which observers living on 3-branes experience an induced metric which bounces. The classes of examples include boundary branes on generalised S-brane backgrounds and probe branes in D-brane/anti D-brane systems. The bounces we consider normally would be expected to require an energy density which violates the weak energy condition, and for our co-dimension one examples this is attributable to bulk curvature terms in the effective Friedmann equation. We examine the features of the acceleration which provides the bounce, including in some cases the existence of positive acceleration without event horizons, and we give a geometrical interpretation for it. We discuss the stability of the solutions from the point of view of both the brane and the bulk. Some of our examples appear to be stable from the bulk point of view, suggesting the possible existence of stable bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde
    corecore