14,478 research outputs found
Droplet mixer based on siphon-induced flow discretization and phase shifting
We present a novel mixing principle for centrifugal microfluidic platforms. Siphon structures are designed to disrupt continuous flows in a controlled manner into a sequence of discrete droplets, displaying individual volumes as low as 60 nL. When discrete volumes of different liquids are alternately issued into a common reservoir, a striation pattern of alternating liquid layers is obtained. In this manner diffusion distances are drastically decreased and a fast and homogeneous mixing is achieved. Efficient mixing is demonstrated for a range of liquid combinations of varying fluid properties such as aqueous inks or saline solutions and human plasma. Volumes of 5 muL have been mixed in less than 20 s to a high mixing quality. One-step dilutions of plasma in a standard phosphate buffer solution up to 1:5 are also demonstrated
Notes on drift theory
It is shown that there is a simpler way to derive the average guiding center drift of a distribution of particles than via the so-called single particle analysis. Based on this derivation it is shown that the entire drift formalism can be considerably simplified, and that results for low order anisotropies are more generally valid than is usually appreciated. This drift analysis leads to a natural alternative derivation of the drift velocity along a neutral sheet
Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report
A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor
Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion
Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition
This paper focuses on multi-scale approaches for variational methods and
corresponding gradient flows. Recently, for convex regularization functionals
such as total variation, new theory and algorithms for nonlinear eigenvalue
problems via nonlinear spectral decompositions have been developed. Those
methods open new directions for advanced image filtering. However, for an
effective use in image segmentation and shape decomposition, a clear
interpretation of the spectral response regarding size and intensity scales is
needed but lacking in current approaches. In this context, data
fidelities are particularly helpful due to their interesting multi-scale
properties such as contrast invariance. Hence, the novelty of this work is the
combination of -based multi-scale methods with nonlinear spectral
decompositions. We compare with scale-space methods in view of
spectral image representation and decomposition. We show that the contrast
invariant multi-scale behavior of promotes sparsity in the spectral
response providing more informative decompositions. We provide a numerical
method and analyze synthetic and biomedical images at which decomposition leads
to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201
- …