9 research outputs found

    Hormonen en kanker

    Get PDF

    Achteruit voorwaarts

    Get PDF

    Progestogenic effects of tibolone on human endometrial cancer cells

    Get PDF
    Tibolone, a synthetic steroid acting in a tissue-specific manner and used in hormone replacement therapy, is converted into three active metabolites: a Delta(4) isomer (exerting progestogenic and androgenic effects) and two hydroxy metabolites, 3 alpha-hydroxytibolone (3 alpha-OH-tibolone) and 3beta-OH-tibolone (exerting estrogenic effects). In the present study an endometrial carcinoma cell line (Ishikawa PRAB-36) was used to investigate the progestogenic properties of tibolone and its metabolites. This cell line contains progesterone receptors A and B, but lacks estrogen and androgen receptors. When tibolone was added to the cells, complete conversion into the progestogenic/androgenic Delta(4) isomer was observed within 6 d. Furthermore, when cells were cultured with tibolone or when the Delta(4) isomer or the established progestagen medroxyprogesterone acetate was added to the medium, marked inhibition of growth was observed. Interestingly, 3 beta-OH-tibolone also induces some inhibition of growth. These growth inhibitions were not observed in progesterone receptor-negative parental Ishikawa cells, and progestagen-induced growth inhibition of PRAB-36 cells could readily be reversed using the antiprogestagen Org-31489. Upon measuring the expression of two progesterone-regulated genes (fibronectin and IGF-binding protein-3), tibolone, the Delta(4) isomer and medroxyprogesterone acetate showed similar gene expression regulation. These results indicate that tibolone, the Delta(4) metabolite, and to some extent 3 beta-OH-tibolone exert progestogenic effects. Tibolone and most likely 3 beta-OH-tibolone are converted into the Delta(4) metabolite

    Identification of quiescent, stem-like cells in the distal female reproductive tract

    Get PDF
    In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent) endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs). To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP) in a Tet-inducible fashion were administered doxycycline (pulse) which was thereafter withdrawn from the drinking water (chase). Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks) LRCs. The LT-LRCs are negative for estrogen receptor-Ξ± and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are in

    Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer

    Get PDF
    PURPOSE: In endometrial cancer, loss of progesterone receptors (PR) is associated with more advanced disease. This study aimed to investigate the mechanism of action of progesterone and the loss of its receptors (PRA and PRB) in development of endometrial cancer. EXPERIMENTAL DESIGN: A 9600-cDNA microarray analysis was performed to study regulation of gene expression in the human endometrial cancer subcell line Ishikawa PRAB-36 by the progestagen medroxy progesterone acetate (MPA). Five MPA-regulated genes were selected for additional investigation. Expression of these genes was studied by Northern blot and by immunohistochemistry in Ishikawa subcell lines expressing different PR isoforms. Additionally, endometrial cancer tissue samples were immunohistochemically stained to study the in vivo protein expression of the selected genes. RESULTS: In the PRAB-36 cell line, MPA was found to regulate the expression of a number of invasion- and metastasis-related genes. On additional investigation of five of these genes (CD44, CSPG/Versican, Tenascin-C, Fibronectin-1, and Integrin-beta 1), it was observed that expression and progesterone regulation of expression of these genes varied in subcell lines expressing different PR isoforms. Furthermore, in advanced endometrial cancer, it was shown that loss of expression of both PR and E-cadherin was associated with increased expression CD44 and CSPG/Versican. CONCLUSION: The present study shows that progestagens exert a modulatory effect on the expression of genes involved in tumor cell invasion. As a consequence, loss of PR expression in human endometrial cancer may lead to development of a more invasive phenotype of the respective tumor

    Difference in signalling between various hormone therapies in endometrium, myometrium and upper part of the vagina

    Get PDF
    BACKGROUND: Combined hormone treatments in post-menopausal women have different clinical responses on uterus and vagina; therefore, we investigated differences in steroid signalling between various hormone therapies in these tissues. METHODS: A total of 30 post-menopausal women scheduled for hysterectomy were distributed into four subgroups: control-group (n = 9), Tibolone-group (n = 8); estradiol (E(2))-group (n = 7); E(2) + medroxyprogesterone acetate (MPA)-group (n = 6). Medication was administered orally every day for 21 days prior to removal of uterus and upper part of the vagina. Tissue RNA was isolated, and gene expression profiles were generated using GeneChip technology and analysed by cluster analysis and significance analysis of microarrays. Apoptosis and cell proliferation assays, as well as immunohistochemistry for hormone receptors were performed. RESULTS: 21-days of treatment with E(2), E(2) + MPA or tibolone imposes clear differential gene expression profiles on endometrium and myometrium. Treatment with E(2) only results in the most pronounced effect on gene expression (up to 1493 genes differentially expressed), proliferation and apoptosis. Tibolone, potentially metabolized to both estrogenic and progestagenic metabolites, shows some resemblance to E(2) signalling in the endometrium and, in contrast, shows significant resemblance to E(2) + MPA signalling in the myometrium. In the vagina the situation is entirely different; all three hormonal treatments result in regulation of a small number (4-73) of genes, in comparison to signalling in endometrium and myometrium. CONCLUSION: Endometrium and myometrium differentially respond to the hormone therapies and use complet

    Risk of cancer in children and young adults conceived by assisted reproductive technology

    Get PDF
    STUDY QUESTION: Do children conceived by ART have an increased risk of cancer? SUMMARY ANSWER: Overall, ART-conceived children do not appear to have an increased risk of cancer. WHAT IS KNOWN ALREADY: Despite the increasing use of ART, i.e. IVF or ICSI worldwide, information about possible long-term health risks for children conceived by these techniques is scarce. STUDY DESIGN, SIZE, DURATION: A nationwide historical cohort study with prospective follow-up (median 21 years), including all live-born offspring from women treated with subfertility treatments between 1980 and 2001. PARTICIPANTS/MATERIALS, SETTING, METHODS: All offspring of a nationwide cohort of subfertile women (OMEGA study) treated in one of the 12 Dutch IVF clinics or two fertility clinics. Of 47 690 live-born children, 24 269 were ART-conceived, 13 761 naturally conceived and 9660 were conceived naturally or through fertility drugs, but not by ART. Information on the conception method of each child and potential confounders were collected through the mothers’ questionnaires and medical records. Cancer incidence was ascertained through linkage with The Netherlands Cancer Registry from 1 January 1989 until 1 November 2016. Cancer risk in ART-conceived children was compared with risks in naturally conceived children from subfertile women (hazard ratios [HRs]) and with the general population (standardized incidence ratios [SIRs]). MAIN RESULTS AND THE ROLE OF CHANCE: The median follow-up was 21 years (interquartile range (IQR): 17–25) and was shorter in ART-conceived children (20 years, IQR: 17–23) compared with naturally conceived children (24 years, IQR: 20–30). In total, 231 cancers were observed. Overall cancer risk was not increased in ART-conceived children, neither compared with naturally conceived children from subfertile women (HR: 1.00, 95% CI 0.72–1.38) nor compared with the general population (SIR = 1.11, 95% CI: 0.90–1.36). From 18 years of age onwards, the HR of cancer in ART-conceived versus naturally conceived individuals was 1.25 (95% CI: 0.73–2.13). Slightly but non-significantly increased risks were observed in children conceived by ICSI or cryopreservation (HR = 1.52, 95% CI: 0.81–2.85; 1.80, 95% CI: 0.65–4.95, respectively). Risks of lymphoblastic leukemia (HR = 2.44, 95% CI: 0.81–7.37) and melanoma (HR = 1.86, 95% CI: 0

    Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription

    No full text
    Modulators of cofactor recruitment by nuclear receptors are expected to play an important role in the coordination of hormone-induced transactivation processes. To identify such factors interacting with the N-terminal domain (NTD) of the progesterone receptor (PR), we used this domain as bait in the yeast Sos-Ras two-hybrid system. cDNAs encoding the C-terminal MYST (MOZ-Ybf2/Sas3-Sas2-Tip60 acetyltransferases) domain of HBO1 [histone acetyltransferase binding to the origin recognition complex (ORC) 1 subunit], a member of the MYST acetylase family, were thus selected from a human testis cDNA library. In transiently transfected CV1 cells, the wildtype HBO1 [611 amino acids (aa)] enhanced transcription mediated by steroid receptors, notably PR, mineralocorticoid receptor, and glucocorticoid receptor, and strongly induced PR and estrogen receptor coactivation by steroid receptor coactivator 1a (SRC-1a). As assessed by two-hybrid and glutathione-S-transferase pull-down assays, the HBO1 MYST acetylase domain (aa 340-611) interacts mainly with the NTD, and also contacts the DNA-binding domain and the hinge domains of hormone-bound PR. The HBO1 N-terminal region (aa 1-340) associates additionally with PR ligand-binding domain (LBD). HBO1 was found also to interact through its NTD with SRC-1a in the absence of steroid receptor. The latter coassociation enhanced specifically activation function 2 activation function encompassed in the LBD. Conversely, the MYST acetylase domain specifically enhanced SRC-1 coupling with PR NTD, through a hormone-dependent mechanism. In human embryonic kidney 293 cells expressing human PRA or PRB, HBO1 raised selectively an SRC-1-dependent response of PRB but failed to regulate PRA activity. We show that HBO1 acts through modification of an LBD-controlled structure present in the N terminus of PRB leading to the modulation of SRC-1 functional coupling with activation function 3-mediated transcription. Importantly, real-time RT-PCR analysis also revealed that HBO1 enhanced SRC-1 coactivation of PR-dependent transcription of human endogenous genes such as Ξ±-6 integrin and 11Ξ²-hydroxydehydrogenase 2 but not that of amphiregulin. Immunofluorescence and confocal microscopy of human embryonic kidney-PRB cells demonstrated that the hormone induces the colocalization of HBO1 with PR-SRC-1 complex into nuclear speckles characteristic of PR-mediated chromatin remodeling. Our results suggest that HBO1 might play an important physiological role in human PR signaling. Copyrigh

    Gross Deletions Involving IGHM, BTK, or Artemis: A Model for Genomic Lesions Mediated by Transposable Elements

    No full text
    Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions (∼60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these
    corecore