5 research outputs found

    The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity

    Get PDF
    Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded β-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal β-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.Fil: Pérez de Berti, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Capaldi, Stefano. Universita Di Verona; ItaliaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Burgardt, Noelia Ines. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Monaco, Hugo L.. Universita Di Verona; ItaliaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; Argentin

    A structural appraisal of sterol carrier protein 2

    No full text
    Sterol Carrier Protein 2 (SCP2) has been associated with lipid binding and transfer activities. However, genomic, proteomic, and structural studies revealed that it is an ubiquitous domain of complex proteins with a variety functions in all forms of life. High-resolution structures of representative SCP2 domains are available, encouraging a comprehensive review of the structural basis for its success. Most SCP2 domains pertain to three major families and are frequently found as stand-alone or at the C-termini of lipid related peroxisomal enzymes, acetyltransferases causing bacterial resistance, and bacterial environmentally important sulfatases. We (1) analyzed the structural basis of the fold and the classification of SCP2 domains; (2) identified structure-determined sequence features; (3) compared the lipid binding cavity of SCP2 and other lipid binding proteins; (4) surveyed proposed mechanisms of SCP2 mediated lipid transfer between membranes; and (5) uncovered a possible new function of the SCP2 domain as a protein-protein recognition device.Fil: Burgardt, Noelia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gianotti, Alejo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; Argentin

    1H, 13C and 15N resonance assignments of human parvulin 17

    Get PDF
    A 25-residue elongation at the N-terminus endows parvulin 17 (Par17) with altered functional properties compared to parvulin 14 (Par14), such as an enhanced influence on microtubule assembly. Therefore the three-dimensional structure of this N-terminal elongation is of particular interest. Here, we report the nearly complete 1H, 13C and 15N chemical shift assignments of Par17. Subsequent chemical shift index analysis indicated that Par17 features a parvulin-type PPIase domain at the C-terminus, analogous to Par14, and an unstructured N-terminus encompassing the first 60 residues. Hence the N-terminus of Par17 apparently adopts a functionally-relevant structure only in presence of the respective interaction partner(s).Fil: Lin, Yi Jan. Kaohsiung Medical University; ChinaFil: Schmidt, Andreas. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Burgardt, Noelia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Thiele, Alexandra. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Weiwad, Matthias. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Lücke, Christian. Max Planck Research Unit for Enzymology of Protein Folding; Alemani

    Parvulin 17-catalyzed tubulin polymerization is regulated by calmodulin in a calcium-dependent manner

    Get PDF
    Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTPdependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796-815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.Fil: Burgardt, Noelia Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Schmidt, Andreas. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Manns, Annika. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Schutkowski, Alexandra. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Jahreis, Günther. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Lin, Yi Jan. Kaohsiung Medical University; AlemaniaFil: Schulze, Bianca. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Masch, Antonia. Martin Luther University Halle Wittenberg; AlemaniaFil: Lücke, Christian. Max Planck Research Unit for Enzymology of Protein Folding; AlemaniaFil: Weiwad, Matthias. Max Planck Research Unit for Enzymology of Protein Folding; Alemania. Martin Luther University Halle Wittenberg; Alemani

    The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity

    Get PDF
    Sterol carrier protein 2 (SCP2), a small intracellular domain present in all forms of life, binds with high affinity a broad spectrum of lipids. Due to its involvement in the metabolism of long-chain fatty acids and cholesterol uptake, it has been the focus of intense research in mammals and insects; much less characterized are SCP2 from other eukaryotic cells and microorganisms. We report here the X-ray structure of Yarrowia lipolytica SCP2 (YLSCP2) at 2.2 Å resolution in complex with palmitic acid. This is the first fungal SCP2 structure solved, and it consists of the canonical five-stranded β-sheet covered on the internal face by a layer of five α-helices. The overall fold is conserved among the SCP2 family, however, YLSCP2 is most similar to the SCP2 domain of human MFE-2, a bifunctional enzyme acting on peroxisomal β-oxidation. We have identified the common structural elements defining the shape and volume of the large binding cavity in all species characterized. Moreover, we found that the cavity of the SCP2 domains is distinctly formed by carbon atoms, containing neither organized water nor rigid polar interactions with the ligand. These features are in contrast with those of fatty acid binding proteins, whose internal cavities are more polar and contain bound water. The results will help to design experiments to unveil the SCP2 function in very different cellular contexts and metabolic conditions.Fil: Pérez de Berti, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Capaldi, Stefano. Universita Di Verona; ItaliaFil: Ferreyra, Raul Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Burgardt, Noelia Ines. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Acierno, Juan Pablo. Universidad Nacional de Quilmes; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Monaco, Hugo L.. Universita Di Verona; ItaliaFil: Ermacora, Mario Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto Multidisciplinario de Biología Celular (i); Argentina. Universidad Nacional de Quilmes; Argentin
    corecore