3 research outputs found

    Spontaneous hot-electron light emission from electron-fed optical antennas

    Full text link
    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale

    Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna

    No full text
    Electrically driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of the structure when a bias voltage is applied across the tunneling gap. Rather than relying on an inherently inefficient inelastic light emission in the gap, we suggest to use a ballistic nanoconstriction as the feed element of an optical antenna supporting plasmonic modes. We discuss the underlying mechanisms responsible for the optical emission and show that, with such a nanoscale contact, one can reach quantum efficiency orders of magnitude larger than with standard light-emitting tunneling structures
    corecore