47 research outputs found

    IDENTIFIKASI HAMA PADA TANAMAN PADI INPARI 30 (Oriza sativa L) DI DESA PAPE KECAMATAN BAJAWA KABUPATEN NGADA

    Get PDF
    This study aims to determine and identify pests that attack Inpari 30 rice plants in Pape Village, Bajawa District, Ngada Regency, East Nusa Tenggara Province by making direct observations in the field. This research was carried out starting from February to May 2023. The research object was in the rice fields owned by farmers. This research was descriptive qualitative, namely observing and identifying 30 inpari rice pests that were seen during direct observation on 25 acres of farmer's land in Pape Village. Sampling by cluster sampling method Pest sampling technique is determined by saturated sampling method because all members of the pest population are used as samples. The results of observations in the field indicate that observations in the morning are the first detection of pests in the field. Types of pests include: False white pests, golden snails, grasshoppers, white stem borer (Scirpophaga innotata), green leafhoppers, brown planthoppers, stinging bugs (Leptocorixa acuta) and sparrows. Keywords: Identification, Pests, Diseases of Inpari 30 Rice Plants INTISARIPenelitian ini bertujuan untuk mengetahui dan mengidentifikasi hama yang menyerang tanaman padi Inpari 30 di Desa Pape Kecamatan Bajawa Kabupaten Ngada Provinsi Nusa tenggara Timur dengan melakukan pengamatan secara langsung di lapangan. Penelitian ini telah laksanakan terhitung mulai  Februari sampai dengan bulan Mei 2023. Obyek penelitian di lahan sawah  milik petani. Penelitian ini deskriptif kualitatif yakni mengamati dan mengidentifikasi jenis hama padi inpari 30 yang terlihat pada saat pengamatan langsung di lahan milik petani seluas 25 are di Desa Pape. Pengambilan sampel dengan metode cluster sampling teknik pengambilan sampel hama ditentukan dengan metode sampling jenuh karena semua anggota populasi hama digunakan sebagai sampel. Hasil pengamatan di lapangan menunjukkan bahwa pengamatan di pagi hari merupakan pendeteksi awal keberadaan hama di lapangan. Jenis hama yang diantaranya: Hama putih palsu, keong mas, belalang, penggerek batang putih (Scirpophaga innotata), wereng hijau, wereng coklat, walang sangit (Leptocorixa acuta) dan burung pipit. Kata kunci: Identifikasi, Hama, Penyakit Tanaman Padi Inpari 3

    Lit up and left dark: Failures of imagination in urban broadband networks

    Get PDF
    The design and deployment of urban broadband infrastructures inscribe particular imaginations of Internet access onto city streets. The different manifestations and locations of these networks, their uses, and access points often expose material excesses of urban broadband networks, as well as failures of Internet service providers, urban planners, and public officials to imagine the diverse ways that people incorporate Internet connection into their everyday lives. We approach the study of urban broadband networks through the juxtaposition of invisible networks that are buried under the streets and have always been “turned off” (dark fiber) versus hypervisible that are “turned on” and prominently displayed on city streets (LinkNYC). In our analysis of these two case studies, we critique themes of visibility and invisibility as indexes of power and access. Our findings are meant to provide a critical analysis of urban technology policy as well as theories of infrastructure, visibility, and access

    Estimating confidence intervals in predicted responses for oscillatory biological models

    Get PDF
    BACKGROUND: The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network’s structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model’s parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. RESULTS: In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. CONCLUSIONS: Our method permits modellers of oscillatory systems to confidently show that a model’s dynamic characteristics follow directly from experimental data and model structure, relaxing assumptions on the particular parameters chosen. Ultimately, this work highlights the importance of continued collection of high-resolution data on gene and protein activity levels, as they allow the development of predictive mathematical models

    Architecture and Media

    No full text
    corecore