375 research outputs found

    One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    Get PDF
    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.112823Ysciescopu

    DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneously. It discovers subsets of genes that are co-expressed in certain samples. Recent studies showed that biclustering has a great potential in detecting marker genes that are associated with certain tissues or diseases. Several biclustering algorithms have been proposed. However, it is still a challenge to find biclusters that are significant based on biological validation measures. Besides that, there is a need for a biclustering algorithm that is capable of analyzing very large datasets in reasonable time.</p> <p>Results</p> <p>Here we present a fast biclustering algorithm called DeBi (Differentially Expressed BIclusters). The algorithm is based on a well known data mining approach called frequent itemset. It discovers maximum size homogeneous biclusters in which each gene is strongly associated with a subset of samples. We evaluate the performance of DeBi on a yeast dataset, on synthetic datasets and on human datasets.</p> <p>Conclusions</p> <p>We demonstrate that the DeBi algorithm provides functionally more coherent gene sets compared to standard clustering or biclustering algorithms using biological validation measures such as Gene Ontology term and Transcription Factor Binding Site enrichment. We show that DeBi is a computationally efficient and powerful tool in analyzing large datasets. The method is also applicable on multiple gene expression datasets coming from different labs or platforms.</p

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Derivation of Chondrogenically-Committed Cells from Human Embryonic Cells for Cartilage Tissue Regeneration

    Get PDF
    Background: Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs) in embryoid bodies (EBs) limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. Methodology/Principal Findings: We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs), as determined by gene expression and immunostaining analysis, was induced by coculture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-b1 (TGF-b1) and b1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. Conclusions/Significance: The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factor

    Control Growth Factor Release Using a Self-Assembled [polycation∶heparin] Complex

    Get PDF
    The importance of growth factors has been recognized for over five decades; however their utilization in medicine has yet to be fully realized. This is because free growth factors have short half-lives in plasma, making direct injection inefficient. Many growth factors are anchored and protected by sulfated glycosaminoglycans in the body. We set out to explore the use of heparin, a well-characterized sulfated glycosaminoglycan, for the controlled release of fibroblast growth factor-2 (FGF-2). Heparin binds a multitude of growth factors and maintains their bioactivity for an extended period of time. We used a biocompatible polycation to precipitate out the [heparin∶FGF-2] complex from neutral buffer to form a release matrix. We can control the release rate of FGF-2 from the resultant matrix by altering the molecular weight of the polycation. The FGF-2 released from the delivery complex maintained its bioactivity and initiated cellular responses that were at least as potent as fresh bolus FGF-2 and fresh heparin stabilized FGF-2. This new delivery platform is not limited to FGF-2 but applicable to the large family of heparin-binding growth factors

    The DEAD-box RNA Helicase DDX6 is Required for Efficient Encapsidation of a Retroviral Genome

    Get PDF
    Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging
    corecore