194 research outputs found

    Cellular Encapsulation in 3D Hydrogels for Tissue Engineering

    Get PDF
    The 3D encapsulation of cells within hydrogels represents an increasingly important and popular technique for culturing cells and towards the development of constructs for tissue engineering. This environment better mimics what cells observe in vivo, compared to standard tissue culture, due to the tissue-like properties and 3D environment. Synthetic polymeric hydrogels are water-swollen networks that can be designed to be stable or to degrade through hydrolysis or proteolysis as new tissue is deposited by encapsulated cells. A wide variety of polymers have been explored for these applications, such as poly(ethylene glycol) and hyaluronic acid. Most commonly, the polymer is functionalized with reactive groups such as methacrylates or acrylates capable of undergoing crosslinking through various mechanisms. In the past decade, much progress has been made in engineering these microenvironments - e.g., via the physical or pendant covalent incorporation of biochemical cues - to improve viability and direct cellular phenotype, including the differentiation of encapsulated stem cells (Burdick et al.)

    Recent advances in hydrogels for cartilage tissue engineering

    Get PDF
    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation

    Tuning hydrogel properties for applications in tissue engineering

    Get PDF
    Biomaterial design is an important component towards tissue engineering applications. There are many parameters that may be adjusted including physical properties (i.e., degradation and mechanics) and chemical properties (e.g., adhesion and cellular interactions). These design components may dictate the success or failure of a tissue engineering approach. Our group is particularly interested in the use of swollen hydrogels as cell carriers. One material that is used to fabricate hydrogels is hyaluronic acid (HA), which is found in many tissues in the body. Here, we show the control over hydrogel degradation, both in the bulk and locally to cells to control both the distribution of extracellular matrix by cells and whether or not a cell spreads in the hydrogels. These signals are important in the final structure and mechanical properties of engineered tissues, and potentially the differentiation of encapsulated stem cells

    Novel nano-composite biomaterials that respond to light

    Get PDF
    Composites of nanoparticles and polymers are finding wide applications to alter material properties, conductivity, and utility. Here, we show that nano-composites can be designed to heat in the presence of near infrared light. This process is useful in transitioning materials through a transition temperature for a range of applications. For example, shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape and may be useful in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components. In this work, we formulated composites of gold nanorods (\u3c1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity

    Progress in material design for biomedical applications

    Get PDF
    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.National Institutes of Health. National Heart, Lung, and Blood Institute (Ruth L. Kirschstein National Research Service Award (F32HL1220090)

    Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments

    Get PDF
    3D microenvironmental parameters control cell behavior, but can be challenging to investigate over a wide range of conditions. Here, a combinatorial hydrogel platform is developed that uses light-mediated thiol-norbornene chemistry to encapsulate cells within hydrogels with biochemical gradients made by spatially varied light exposure. Specifically, mesenchymal stem cells are photoencapsulated in norbornene-modified hyaluronic acid hydrogels functionalized with gradients (0–5 mM) of peptides that mimic cell-cell or cell-matrix interactions, either as single or orthogonal gradients. Chondrogenesis varied spatially in these hydrogels based on the local biochemical formulation, as indicated by Sox9 and aggrecan expression levels. From 100 combinations investigated, discrete hydrogels are formulated and early gene expression and long-term cartilage-specific matrix production are assayed and found to be consistent with screening predictions. This platform is a scalable, highthroughput technique that enables the screening of the effects of multiple biochemical signals on 3D cell behavior

    Ischemia Induces P-Selectin-Mediated Selective Progenitor Cell Engraftment in the Isolated-Perfused Heart

    Get PDF
    Clinical trials infusing Bone Marrow Cells (BMCs) into injured hearts have produced measureable improvements in cardiac performance, but were insufficient to improve patient outcomes. Low engraftment rates are cited as probable contributor to limited improvements. To understand the mechanisms that control myocardial engraftment of BMCs following ischemia-reperfusion injury, in isolated–perfused mouse hearts, stop-flow ischemia was followed by variable-duration reperfusion (0–60 min) before addition of labeled syngenic BMCs to the perfusate. After a buffer-only wash, the heart was disaggregated. Retained BMCs (digest) and infused BMCs (aliquot) were compared by flow cytometry for c-kit and CD45 expression to determine the proportion of cell subtypes engrafted versus delivered (selectivity ratio). In these studies, a time-dependent selective retention of c-kit+ cells was apparent starting at 30 min of reperfusion, at which time c-kit+/CD45+ BMCs showed a selectivity ratio of 18 ± 2 (versus 2 ± 1 in sham-ischemic controls). To study the underlying mechanism for this selective retention, neutralizing antibodies for P-selectin or L-selectin were infused into the heart preparation and incubated with BMCs prior to BMC infusion. Blocking P-selectin in ischemic hearts ablated selectivity for c-kit+/CD45+ BMCs at 30 min reperfusion (selectivity ratio of 3 ± 1) while selectivity persisted in the presence of L-selectin neutralization (selectivity ratio of 17 ± 2). To corroborate this finding, a parallel plate flow chamber was used to study capture and rolling dynamics of purified c-kit+ versus c-kit- BMCs on various selectin molecules. C-kit+ BMCs interacted weakly with L-selectin substrates (0.03 ± 0.01% adhered) but adhered strongly to P-selectin (0.28 ± 0.04% adhered). C-kit- BMCs showed intermediate binding regardless of substrate (0.18 ± 0.04% adhered on L-selectin versus 0.17 ± 0.04% adhered on P-selectin). Myocardial ischemia–reperfusion stress induces selective engraftment of c-kit+ bone marrow progenitor cells via P-selectin activation

    Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells

    Get PDF
    Control of self-renewal and differentiation of human ES cells (hESCs) remains a challenge. This is largely due to the use of culture systems that involve poorly defined animal products and do not mimic the normal developmental milieu. Routine protocols involve the propagation of hESCs on mouse fibroblast or human feeder layers, enzymatic cell removal, and spontaneous differentiation in cultures of embryoid bodies, and each of these steps involves significant variability of culture conditions. We report that a completely synthetic hydrogel matrix can support (i) long-term self-renewal of hESCs in the presence of conditioned medium from mouse embryonic fibroblast feeder layers, and (ii) direct cell differentiation. Hyaluronic acid (HA) hydrogels were selected because of the role of HA in early development and feeder layer cultures of hESCs and the controllability of hydrogel architecture, mechanics, and degradation. When encapsulated in 3D HA hydrogels (but not within other hydrogels or in monolayer cultures on HA), hESCs maintained their undifferentiated state, preserved their normal karyotype, and maintained their full differentiation capacity as indicated by embryoid body formation. Differentiation could be induced within the same hydrogel by simply altering soluble factors. We therefore propose that HA hydrogels, with their developmentally relevant composition and tunable physical properties, provide a unique microenvironment for the selfrenewal and differentiation of hESCs

    Computational Sensitivity Investigation of Hydrogel Injection Characteristics for Myocardial Support

    Get PDF
    Biomaterial injection is a potential new therapy for augmenting ventricular mechanics after myocardial infarction (MI). Recent in vivo studies have demonstrated that hydrogel injections can mitigate the adverse remodeling due to MI. More importantly, the material properties of these injections influence the efficacy of the therapy. The goal of the current study is to explore the interrelated effects of injection stiffness and injection volume on diastolic ventricular wall stress and thickness. To achieve this, finite element models were constructed with different hydrogel injection volumes (150 µL and 300 µL), where the modulus was assessed over a range of 0.1 kPa to 100 kPa (based on experimental measurements). The results indicate that a larger injection volume and higher stiffness reduce diastolic myofiber stress the most, by maintaining the wall thickness during loading. Interestingly, the efficacy begins to taper after the hydrogel injection stiffness reaches a value of 50 kPa. This computational approach could be used in the future to evaluate the optimal properties of the hydrogel
    corecore