69 research outputs found

    Tidally excited oscillations in hot white dwarfs

    Get PDF
    We study the flux variation in helium white dwarfs (WDs) induced by dynamical tides for a variety of WD models with effective temperatures ranging from TT=10 kK to TT=26 kK. At linear order, we find the dynamical tide can significantly perturb the observed flux in hot WDs. If the temperature T14T\gtrsim14 kK, then the dynamical tide may induce a fractional change in the flux by >1% when the orbital period is Porb2060minP_{\rm orb}\simeq 20-60\,{\rm min}. The ratio between the flux modulation due to the dynamical tide and that due to the equilibrium tide (i.e., ellipsoidal variability) increases as the WD's radius decreases, and it could exceed O(10) if the WD has a radius R0.03RR\lesssim0.03 R_\odot. Unlike the ellipsoidal variability which is in phase with the orbital motion, the pulsation caused by the dynamical tide may have a substantial phase shift. A cold WD with T10T\lesssim 10 kK, on the other hand, is unlikely to show observable pulsations due to the dynamical tide. At shorter orbital periods, the dynamical tide may become highly nonlinear. We approximate this regime by treating the waves as one-way traveling waves and find the flux variation is typically reduced to 0.1%-1% and the excess phase is likely to be 90 degrees (though with large uncertainty). Even in the traveling-wave limit, the flux perturbation due to dynamical tide could still exceed the ellipsoidal variability for compact WDs with R0.02RR\lesssim0.02 R_\odot. We further estimate the nonlinear flux perturbations oscillating at four times the orbital frequency dominated by a self-coupled parent g-mode driving low-order daughter p-modes. The nonlinear flux variation could be nearly 50% of the linear variation for very hot WD models with T26T\gtrsim26 kK and 1% linear flux variation. We thus predict both the linear and nonlinear flux variations due to dynamical tides are likely to have significant observational signatures.Comment: 17 pages, 14 figures, submitted to MNRA

    Tidally excited oscillations in hot white dwarfs

    Get PDF
    We study the flux variation in helium white dwarfs (WDs) induced by dynamical tides for a variety of WD models with effective temperatures ranging from T=10kK to T=26kK⁠. At linear order, we find the dynamical tide can significantly perturb the observed flux in hot WDs. If the temperature T≳14kK⁠, then the dynamical tide may induce a fractional change in the flux by >1 per cent when the orbital period is P_(orb) ≃ 20−60min⁠. The ratio between the flux modulation due to the dynamical tide and that due to the equilibrium tide (i.e. ellipsoidal variability) increases as the WD’s radius decreases, and it could exceed O(10) if the WD has a radius R ≲ 0.03 R_⊙. Unlike the ellipsoidal variability which is in phase with the orbital motion, the pulsation caused by the dynamical tide may have a substantial phase shift. A cold WD with T≃10kK⁠, on the other hand, is unlikely to show observable pulsations due to the dynamical tide. At shorter orbital periods, the dynamical tide may break and become highly non-linear. We approximate this regime by treating the waves as one-way travelling waves and find the flux variation is typically reduced to 0.1–1 per cent and the excess phase is ∼90° (though with large uncertainty). Even in the travelling-wave limit, the flux perturbation due to dynamical tide could still exceed the ellipsoidal variability for compact WDs with R ≲ 0.02 R_⊙. We further estimate the non-linear flux perturbations oscillating at four times the orbital frequency dominated by a self-coupled parent g-mode driving low-order daughter p modes. The non-linear flux variation could be nearly 50 per cent of the linear variation for very hot WD models with T≳26kK and 1 per cent linear flux variation. We thus predict that both the linear and non-linear flux variations due to dynamical tides are likely to have significant observational signatures

    A compact X-ray emitting binary in likely association with 4FGL J0935.3+0901

    Get PDF
    4FGL J0935.3+0901 is a γ-ray source detected by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope. We have conducted detailed analysis of the LAT data for this source and multiwavelength studies of the source field. Its γ-ray emission can be described with a power law (Γ = 2.0 ± 0.2) with an exponential cut-off (E_c = 2.9 ± 1.6 GeV), while the flux shows significant long-term variations. From analysis of archival Neil Gehrels Swift Observatory X-Ray Telescope data, we find only one X-ray source in the LAT’s 2σ error region. Within a 3.7arcsec radius error circle of the X-ray source, there is only one optical object down to r′ ∼ 23 mag. Time-resolved photometry of the optical object indicates a likely 2.5 h periodic modulation, while its spectrum shows double-peaked hydrogen and helium emission lines (similar to those seen in accretion discs in low-mass X-ray binaries). Combining these results, we conclude that we have discovered a compact X-ray emitting binary in likely association with 4FGL J0935.3+0901, i.e. a millisecond pulsar (MSP) binary. We discuss the implication of the optical spectral features: this binary could be a transitional MSP system at a subluminous disc state, although the other possibility, the binary in a rotation-powered state showing the optical emission lines due to intrabinary interaction processes, cannot be excluded. Further observational studies will help to determine detailed properties of this candidate MSP binary and thus clarify its current state

    A compact X-ray emitting binary in likely association with 4FGL J0935.3+0901

    Get PDF
    4FGL J0935.3+0901 is a γ-ray source detected by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope. We have conducted detailed analysis of the LAT data for this source and multiwavelength studies of the source field. Its γ-ray emission can be described with a power law (Γ = 2.0 ± 0.2) with an exponential cut-off (E_c = 2.9 ± 1.6 GeV), while the flux shows significant long-term variations. From analysis of archival Neil Gehrels Swift Observatory X-Ray Telescope data, we find only one X-ray source in the LAT’s 2σ error region. Within a 3.7arcsec radius error circle of the X-ray source, there is only one optical object down to r′ ∼ 23 mag. Time-resolved photometry of the optical object indicates a likely 2.5 h periodic modulation, while its spectrum shows double-peaked hydrogen and helium emission lines (similar to those seen in accretion discs in low-mass X-ray binaries). Combining these results, we conclude that we have discovered a compact X-ray emitting binary in likely association with 4FGL J0935.3+0901, i.e. a millisecond pulsar (MSP) binary. We discuss the implication of the optical spectral features: this binary could be a transitional MSP system at a subluminous disc state, although the other possibility, the binary in a rotation-powered state showing the optical emission lines due to intrabinary interaction processes, cannot be excluded. Further observational studies will help to determine detailed properties of this candidate MSP binary and thus clarify its current state

    A new class of large-amplitude radial-mode hot subdwarf pulsators

    Full text link
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≤ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio

    The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor

    Get PDF
    Luminous Red Novae (LRNe) are astrophysical transients associated with the partial ejection of a binary system's common envelope (CE) shortly before its merger. Here we present the results of our photometric and spectroscopic follow-up campaign of AT2018bwo (DLT18x), a LRN discovered in NGC45, and investigate its progenitor system using binary stellar-evolution models. The transient reached a peak magnitude of M_r = −10.97 ± 0.11 and maintained this brightness during its optical plateau of t_p = 41 ± 5days. During this phase, it showed a rather stable photospheric temperature of ~3300K and a luminosity of ~10⁴⁰ erg s⁻¹. The photosphere of AT2018bwo at early times appeared larger and cooler than other similar LRNe, likely due to an extended mass-loss episode before the merger. Towards the end of the plateau, optical spectra showed a reddened continuum with strong molecular absorption bands. The reprocessed emission by the cooling dust was also detected in the mid-infrared bands ~1.5 years after the outburst. Archival Spitzer and Hubble Space Telescope data taken 10-14 years before the transient event suggest a progenitor star with T_(prog) ∼ 6500K, R_(prog) ∼ 100 R_⊙ and L_(prog) ∼ 2 × 10⁴ L_⊙, and an upper limit for optically thin warm (1000 K) dust mass of M_d < 10⁻⁶ M_⊙. Using stellar binary-evolution models, we determined the properties of binary systems consistent with the progenitor parameter space. For AT2018bwo, we infer a primary mass of 12-16 M_⊙, which is 9-45% larger than the ~11M⊙ obtained using single-star evolution models. The system, consistent with a yellow-supergiant primary, was likely in a stable mass-transfer regime with -2.4 < log (Ṁ/M_⊙ yr⁻¹) < -1.2 a decade before the main instability occurred. During the dynamical merger, the system would have ejected 0.15-0.5M⊙ with a velocity of ~500 km s⁻¹
    corecore