30 research outputs found

    18O isotope effect in the photosynthetic water splitting process

    Get PDF
    AbstractIn mass spectroscopic experiments of oxygen evolution in Photosystem II at 50% enrichment of H218O, one expects equal signals of 18O2 and 16O2 unless one of the isotopes is favored by the oxygen evolving complex (OEC). We have observed a deviation from this expectation, being a clear indication of an isotope effect. We have measured the effect to be 1.14–1.30, which is higher than the theoretically predicted value of 1.014–1.06. This together with the strong temperature variation of the measured effect with a discontinuity at 11 °C observed for wild-type tobacco and at 9 °C for a yellow-green tobacco mutant suggest that an additional mechanism is responsible for the observed high isotope effect. The entry of a finite size of water clusters to the cleavage site of the OEC can explain the observation

    Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM

    Get PDF
    Using atomic force microscopy (AFM) we performed dynamic force measurements of the adhesive forces in two model systems: avidin-biotin and streptavidin-biotin. In our experiments we used glutaraldehyde for immobilization of (strept)avidin on the tip and biotin on the sample surface. Such interface layers are more rigid than those usually reported in the literature for AFM studies, when (strept)avidin is coupled with biotinylated bovine albumin and biotin with agarose polymers. We determined the dependence of the rupture forces of avidin-biotin and streptavidin-biotin bonds in the range 300-9600 pN/s. The slope of a semilogarithmic plot of this relation changes at about 1700 pN/s. The existence of two different regimes indicates the presence of two activation barriers of these complexes during the dissociation process. The dissociation rates and activation energy barriers, calculated from the Bell model, for the avidin-biotin and streptavidin-biotin interactions are similar to each other for loading rates > 1700 pN/s but they are different from each other for loading rates < 1700 pN/s. In the latter case, the dissociation rates show a higher stability of the avidin-biotin complex than the streptavidin-biotin complex due to a larger outer activation barrier of 0.8 k(B)T. The bond-rupture force is about 20 pN higher for the avidin-biotin pair than for the streptavidin-biotin pair for loading rates < 1700 pN/s. These two experimental observations are in agreement with the known structural differences between the biotin binding pocket of avidin and of streptavidin

    Atomic force microscopy studies of the adhesive properties of DPPC vesicles containing β-carotene

    No full text
    A role of carotenoids as modulators of physical properties of model and biological membranes has been already postulated. However, there is a lack of information on the influence of these pigments on interactions between the lipids which form such membranes. This paper applies atomic force microscopy (AFM) in to study the effects of β-carotene on the adhesion properties of DPPC multilamellar liposomes. This allowed us to gain, for the first time, a direct insight into the interactions between the components in model systems on a molecular level. We observe that the adhesive forces in DPPC multilamellar liposomes containing 1mol% of β-carotene decrease exponentially with increasing temperature, and that at about 37°C they diminish. In the case of pure liposomes the decline in adhesion is of a different nature and the adhesive forces disappear at 34°C. The adhesive forces are about 5 times higher at 31°C in the presence of β-carotene than in its absence. However, measurements using differential scanning calorimetry (DSC) showed a shift of the lamellar-to-undulled-lamellar phase transition toward lower temperatures by about 0.8±0.2°C in a system containing β-carotene. The enthalpy changes (ΔH) of this transition are similar for both systems. For the main transition, gel-to-liquid crystalline, the peak is shifted by about 0.5±0.1°C, and ΔH decreases by about 30% in liposomes treated with β-carotene in comparison to pure liposomes. Our results suggest increased cooperation between liposome components in a system with enriched β-carotene, which cause a change in phase transition temperatures. Moreover, these interactions are very sensitive to temperature

    Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559.

    No full text
    We have found that elevated copper concentrations, apart from the inhibition of oxygen evolution, changed the initial states distribution of the oxygen-evolving complex. Already at low concentrations, copper ions oxidized the low-potential form of cytochrome b (559) and also its high-potential form at higher concentrations at which fluorescence quenching was observed. We suggest that the primary target sites in Photosystem II for copper is tyrosine(z), both cytochrome b (559) forms and chlorophyll(z), and that these sites are the source of the copper-induced fluorescence quenching and oxygen evolution inhibition in Photosystem II
    corecore