1,384 research outputs found

    Temperature Effects on Development of Three Cereal Aphid Parasitoids (Hymenoptera: Aphidiidae)

    Get PDF
    Temperature is an important climatological variable that influences the biology and ecology of insects. Poor climatic adaptation can limit the effectiveness of parasitic insects in biological control. Two exotic parasites (Syrian Diaeretiella rapae (M\u27Intosh) and Argentinean Aphidius colemani Viereck) imported for biological control of the Russian wheat aphid, Diuraphis noxia (Mordvilko), and one native parasite (Diaeretiella rapae) were reared in growth chambers in three fluctuating temperature regimes with average daily temperatures of 12, 18, and 24°C. Estimates of temperature thresholds for immature development were 3.3, 3.5, and 2.8°C, for Oklahoman D. rapae, Syrian D. rapae, and A. colemani, respectively. Estimates of thermal require- ments for development from egg to adult were 297, 278, and 301 degree-days for the three parasitoids. Dry weights of adults reared in different fluctuating temperature regimes did not differ significantly among sexes, but adults from regimes with low average temperatures of 12 and 18°C had significantly greater weights than those reared in a regime with an average temperature of 24°C. Results suggest that developmental response to temperature will not limit the effectiveness of the exotic parasites in biological control

    Parasitism, Adult Emergence, Sex Ratio, and Size of \u3ci\u3eAphidius Colemani\u3c/i\u3e (Hymenoptera: Aphidiidae) on Several Aphid Species

    Get PDF
    Aphidius colemani Viereck parasitizes several economically important aphid pests of small grain crops including the greenbug, Schizaphis graminum and the Russian wheat aphid, Diuraphis noxia. The ability of A. colemani to switch from S. graminum to several species of aphids common to agricultural and associated non-agricultural ecosystems in the Great Plains, and the effects of host-change on several biological parameters that influence population growth rate were determined. Female A. colemani parasitized and developed to adulthood in nine of 14 aphid species to which they were exposed in the laboratory. All small grain feeding aphids except Sipha flava were parasi­tized. Two sunflower feeding species (Aphis nerii and A. helianthi) and two crucifer feeding species (Lipaphis erysimi and Brevicoryne brassicae) were parasitized, as was the cotton aphid. Aphis gossypii. The average percentage of aphids parasitized differed significantly among host aphid species. as did the percentage of parasitoids surviving from the mummy to the adult stage and the time required for immature development. The sex ratio of adults that enclosed from the various hosts did not differ significantly among species. Dry weights of adult parasitoids differed significantly among host species. Adults from S. graminum weighed most (0.054 mg) while those emerging from A. helianthi weighed least (0.020 mg). Results are discussed in terms of strategies for classical biological control of aphid pests of cereals

    Empirical Studies of Evolving Systems

    Get PDF
    This paper describes the results of the working group investigating the issues of empirical studies for evolving systems. The groups found that there were many issues that were central to successful evolution and this concluded that this is a very important area within software engineering. Finally nine main areas were selected for consideration. For each of these areas the central issues were identified as well as success factors. In some cases success stories were also described and the critical factors accounting for the success analysed. In some cases it was later found that a number of areas were so tightly coupled that it was important to discuss them together

    Self-Screening Hawking Atmosphere in the Presence of a Bulk Viscosity

    Get PDF
    The recent theory of 't Hooft [ Nucl. Phys. Suppl. {\bf 68}, 174 (1998)] models the black hole as a system endowed with an envelope of matter that obeys an equation of state in the form p=(γ1)ρ p=(\gamma -1)\rho, and acts as a source in Einstein's equations. The present paper generalizes the 't Hooft theory so as to take into account a bulk viscosity ζ\zeta in the fluid. It is shown that even a slight positive value of ζ\zeta will suffice to yield complete agreement with the Hawking formula for the entropy of the black hole, if the value of the constant γ\gamma takes a value that is slightly less than 4/3. The value γ=4/3\gamma=4/3 corresponds to a radiation fluid.Comment: 12 pages, LaTeX, no figures, minor extensions of the discussion. To appear in PR

    Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions

    Full text link
    The traffic-like collective movement of ants on a trail can be described by a stochastic cellular automaton model. We have earlier investigated its unusual flow-density relation by using various mean field approximations and computer simulations. In this paper, we study the model following an alternative approach based on the analogy with the zero range process, which is one of the few known exactly solvable stochastic dynamical models. We show that our theory can quantitatively account for the unusual non-monotonic dependence of the average speed of the ants on their density for finite lattices with periodic boundary conditions. Moreover, we argue that the model exhibits a continuous phase transition at the critial density only in a limiting case. Furthermore, we investigate the phase diagram of the model by replacing the periodic boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure

    Cluster formation and anomalous fundamental diagram in an ant trail model

    Get PDF
    A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35, L573 (2002)}), motivated by the motions of ants in a trail, is investigated in detail in this paper. The flux of ants in this model is sensitive to the probability of evaporation of pheromone, and the average speed of the ants varies non-monotonically with their density. This remarkable property is analyzed here using phenomenological and microscopic approximations thereby elucidating the nature of the spatio-temporal organization of the ants. We find that the observations can be understood by the formation of loose clusters, i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file
    corecore