3,251 research outputs found

    Exponential-Potential Scalar Field Universes I: The Bianchi I Models

    Full text link
    We obtain a general exact solution of the Einstein field equations for the anisotropic Bianchi type I universes filled with an exponential-potential scalar field and study their dynamics. It is shown, in agreement with previous studies, that for a wide range of initial conditions the late-time behaviour of the models is that of a power-law inflating FRW universe. This property, does not hold, in contrast, when some degree of inhomogeneity is introduced, as discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in Phys. Rev.

    Cluster formation and anomalous fundamental diagram in an ant trail model

    Get PDF
    A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35, L573 (2002)}), motivated by the motions of ants in a trail, is investigated in detail in this paper. The flux of ants in this model is sensitive to the probability of evaporation of pheromone, and the average speed of the ants varies non-monotonically with their density. This remarkable property is analyzed here using phenomenological and microscopic approximations thereby elucidating the nature of the spatio-temporal organization of the ants. We find that the observations can be understood by the formation of loose clusters, i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file

    Chaotic Friedmann-Robertson-Walker Cosmology

    Get PDF
    We show that the dynamics of a spatially closed Friedmann - Robertson - Walker Universe conformally coupled to a real, free, massive scalar field, is chaotic, for large enough field amplitudes. We do so by proving that this system is integrable under the adiabatic approximation, but that the corresponding KAM tori break up when non adiabatic terms are considered. This finding is confirmed by numerical evaluation of the Lyapunov exponents associated with the system, among other criteria. Chaos sets strong limitations to our ability to predict the value of the field at the Big Crunch, from its given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure

    On homothetic cosmological dynamics

    Get PDF
    We consider the homogeneous and isotropic cosmological fluid dynamics which is compatible with a homothetic, timelike motion, equivalent to an equation of state ρ+3P=0\rho + 3P = 0. By splitting the total pressure PP into the sum of an equilibrium part pp and a non-equilibrium part Π\Pi, we find that on thermodynamical grounds this split is necessarily given by p=ρp = \rho and Π=(4/3)ρ\Pi = - (4/3)\rho, corresponding to a dissipative stiff (Zel'dovich) fluid.Comment: 8 pages, to be published in Class. Quantum Gra
    corecore