3,251 research outputs found
Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory
International audienc
Improved performance of a rapid immunochromatographic assay for detection of PBP2a in non-Staphylococcus aureus staphylococcal species
Exponential-Potential Scalar Field Universes I: The Bianchi I Models
We obtain a general exact solution of the Einstein field equations for the
anisotropic Bianchi type I universes filled with an exponential-potential
scalar field and study their dynamics. It is shown, in agreement with previous
studies, that for a wide range of initial conditions the late-time behaviour of
the models is that of a power-law inflating FRW universe. This property, does
not hold, in contrast, when some degree of inhomogeneity is introduced, as
discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in
Phys. Rev.
Cluster formation and anomalous fundamental diagram in an ant trail model
A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35,
L573 (2002)}), motivated by the motions of ants in a trail, is investigated in
detail in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants
varies non-monotonically with their density. This remarkable property is
analyzed here using phenomenological and microscopic approximations thereby
elucidating the nature of the spatio-temporal organization of the ants. We find
that the observations can be understood by the formation of loose clusters,
i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file
Chaotic Friedmann-Robertson-Walker Cosmology
We show that the dynamics of a spatially closed Friedmann - Robertson -
Walker Universe conformally coupled to a real, free, massive scalar field, is
chaotic, for large enough field amplitudes. We do so by proving that this
system is integrable under the adiabatic approximation, but that the
corresponding KAM tori break up when non adiabatic terms are considered. This
finding is confirmed by numerical evaluation of the Lyapunov exponents
associated with the system, among other criteria. Chaos sets strong limitations
to our ability to predict the value of the field at the Big Crunch, from its
given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure
On homothetic cosmological dynamics
We consider the homogeneous and isotropic cosmological fluid dynamics which
is compatible with a homothetic, timelike motion, equivalent to an equation of
state . By splitting the total pressure into the sum of an
equilibrium part and a non-equilibrium part , we find that on
thermodynamical grounds this split is necessarily given by and , corresponding to a dissipative stiff (Zel'dovich) fluid.Comment: 8 pages, to be published in Class. Quantum Gra
- …
