9 research outputs found

    Simulation Training to Improve Informed Consent and Pharmacokinetic/Pharmacodynamic Sampling in Pediatric Trials

    Get PDF
    Background: Pediatric trials to add missing data for evidence-based pharmacotherapy are still scarce. A tailored training concept appears to be a promising tool to cope with critical and complex situations before enrolling the very first patient and subsequently to ensure high-quality study conduct. The aim was to facilitate study success by optimizing the preparedness of the study staff shift. Method: An interdisciplinary faculty developed a simulation training focusing on the communication within the informed consent procedure and the conduct of the complex pharmacokinetic/pharmacodynamic (PK/PD) sampling within a simulation facility. Scenarios were video-debriefed by an audio-video system and manikins with artificial blood simulating patients were used. The training was evaluated by participants' self-assessment before and during trial recruitment. Results: The simulation training identified different optimization potentials for improved informed consent process and study conduct. It facilitated the reduction of avoidable errors, especially in the early phase of a clinical study. The knowledge gained through the intervention was used to train the study teams, improve the team composition and optimize the on-ward setting for the FP-7 funded “LENA” project (grant agreement no. 602295). Self-perceived ability to communicate core elements of the trial as well as its correct performance of sample preparation increased significantly (mean, 95% CI, p ≤ 0.0001) from 3 (2.5–3.5) to four points (4.0–4.5), and from 2 (1.5–2.5) to five points (4.0–5.0). Conclusion: An innovative training concept to optimize the informed consent process and study conduct was successfully developed and enabled high-quality conduct of the pediatric trials as of the very first patient visit

    Fit-for-Purpose Quality Control System in Continuous Bioanalysis during Long-Term Pediatric Studies

    No full text
    Contains fulltext : 220782.pdf (Publisher’s version ) (Closed access)The LENA collaborator list below was not included in the original article.s

    Validated low-volume aldosterone immunoassay tailored to GCLP-compliant investigations in small sample volumes

    No full text
    Introduction: Heart failure is well investigated in adults, but data in children is lacking. To overcome this shortage of reliable data, appropriate bioanalytical assays are required. Objectives: Development and validation of a bioanalytical assay for the determination of aldosterone concentrations in small sample volumes applicable to clinical studies under Good Clinical Laboratory Practice. Methods: An immunoassay was developed based on a commercially available enzyme-linked immunosorbent assay and validated according to current bioanalytical guidelines of the European Medicines Agency (EMA) and U.S. Food and Drug Administration (FDA). Results: The assay (range 31.3–1000 pg/mL [86.9–2775 pmol/L]) is characterized by a between-run accuracy from − 3.8% to − 0.8% and a between-run imprecision ranging from 4.9% to 8.9% (coefficient of variation). For within-run accuracy, the relative error was between − 11.1% and + 9.0%, while within-run imprecision ranged from 1.2% to 11.8% (CV). For parallelism and dilutional linearity, the relative error of back-calculated concentrations varied from − 14.1% to + 8.4% and from − 7.4% to + 10.5%, respectively. Conclusions: The immunoassay is compliant with the bioanalytical guidelines of the EMA and FDA and allows accurate and precise aldosterone determinations. As the assay can run low-volume samples of 40 μL, it is especially valuable for pediatric investigations. Keywords: Aldosterone, Immunoassay, Pediatric, Pharmacodynamic, Validation, Low-volum

    A continued method performance monitoring approach for the determination of pediatric renin samples - application within a European clinical trial

    No full text
    Contains fulltext : 229810.pdf (Publisher’s version ) (Open Access)Background Plasma renin levels were determined in the academia-driven, EU-funded "Labeling of Enalapril from Neonates up to Adolescents" (LENA) project to evaluate its role in pediatric heart failure. Quality-controlled bioanalysis is crucial to ensure reliable data generation. However, a comprehensive bioanalytical quality control (QC) concept to monitor the method performance within an academic environment was lacking. Methods Thus, a QC concept was designed encompassing regulatory guidance, international recommendations and current scientific discussions. The concept included (1) a system-suitability test, (2) verification of single bioanalytical runs by calibration curve performance and evaluation of QCs, (3) assessment of the inter-run accuracy according to Clinical Laboratory Standards Institute (CLSI) guideline, (4) monitoring of reproducibility by pediatric incurred samples, (5) blank-sample analysis and (6) participation in interlaboratory testing. Results The concept was successfully applied to the academic project. About 11% of single runs were identified as invalid and triggered a re-analysis of unknown samples being included in those runs. The usefulness of the customized inter-run monitoring was demonstrated and proved the good accuracy from the first to the last run. All 147 reanalyzed incurred sample pairs complied with regulatory requirements. Conclusions The regulatory complied QC concept was customized for the demands of academia-driven pediatric trials and contributed to the reliable quantification of 965 pediatric renin samples

    A comprehensive quality control system suitable for academic research: application in a pediatric study

    No full text
    Item does not contain fulltextAim: Clinical research in pediatrics is progressively initiated by academia. As the reliability of pharmacodynamic measures is closely linked to the quality of bioanalytical data, bioanalytical quality assurance is crucial. However, clear guidance on comprehensive bioanalytical quality monitoring in the academic environment is lacking. Methods & results: By applying regulatory guidelines, international recommendations and scientific discussions, a five-step quality control system for monitoring the bioanalysis of aldosterone by immunoassay was developed. It comprised performance qualification, calibration curve evaluation, analysis of the intra- and inter-run performance via quality control samples, incurred sample reanalysis and external quality assessment by interlaboratory testing. A total of 55 out of 70 runs were qualified for the quantification of aldosterone in the study sample enabling the evaluation of 954 pediatric samples and demonstrating reliability over the 29-month bioanalysis period. Conclusion: The bioanalytical quality control system successfully monitored the aldosterone assay performance and proved its applicability in the academic environment

    A quality control system for ligand-binding assay of plasma renin activity: Proof-of-concept within a pharmacodynamic study

    No full text
    Contains fulltext : 220641.pdf (Publisher’s version ) (Closed access)While the role of plasma renin activity (PRA) in heart failure has been widely studied in adults, comprehensive data on pediatric heart failure remain lacking. This drawback is increasingly being addressed by academic research. Nevertheless, such pediatric investigations are commonly conducted only once due to ethical constraints. Therefore, the quality of bioanalytical data must be ensured to acquire meaningful insights into maturing humoral parameters. However, appropriate post-validation assessment of bioanalytical runs is currently underrepresented by regulatory guidance. Thus, for applications in an academic environment, an easy-to-handle six-step bioanalytical quality control system was designed based on regulatory guidelines (e.g. U.S. Food and Drug Administration) combined with international recommendations (e.g. Clinical and Laboratory Standards Institute) and current scientific discussion. Its applicability to an enzyme-linked immunosorbent assay for determination of PRA was investigated within three pediatric trials of the EU-funded "Labeling of Enalapril in Neonates up to Adolescents" project. This quality control system identified 15 % bioanalytical runs as non-compliant to the predefined specifications and ensured the reliable quantification of 940 pharmacodynamic samples. The inter-run assessment of quality controls was able to demonstrate the comparability of the study results. Furthermore, 86 % of incurred sample reanalysis pairs complied with regulatory requirements (>67 %), thus underlining the long-term reproducibility of the utilized ligand-binding assay. Successful participation in interlaboratory testing confirmed the accuracy of the applied method throughout the entire study period. Further investigations showed no notable differences between the five applied lots of the PRA assay. The applicability of this quality control system was proven in an academic environment and ensured reliable results for PRA over the entire 24-month study period

    Orodispersible minitablets of enalapril for use in children with heart failure (LENA): Rationale and protocol for a multicentre pharmacokinetic bridging study and follow-up safety study

    Get PDF
    Introduction: Treatment of paediatric heart failure is based on paradigms extensively tested in the adult population assuming similar underlying pathophysiological mechanisms. Angiotensin converting enzyme inhibitors (ACEI) like enalapril are one of the cornerstones of treatment and commonly used off-label in children. Dose recommendations have been extrapolated from adult experience, but the relationship between dose and pharmacokinetics (PK) in (young) children is insufficiently studied. Furthermore, appropriate paediatric formulations are lacking. Within the European collaborative project LENA, a novel formulation of enalapril orodispersible minitablets (ODMT), suitable for paediatric administration, will be tested in (young) children with heart failure due to either dilated cardiomyopathy or congenital heart disease in two pharmacokinetic bridging studies. Paediatric PK data of enalapril and its active metabolite enalaprilat will be obtained. In a follow-up study, the safety of enalapril ODMTs will be demonstrated in patients on long-term treatment of up to 10 months. Furthermore, additional information about pharmacodynamics (PD) and ODMT acceptability will be collected in all three studies. Methods and Analysis: Phase II/III, open-label, multicentre study. Children with dilated cardiomyopathy (DCM) (n=25; 1 month to less than 12 years) or congenital heart disease (CHD) (n=60; 0 to less than 6 years) requiring or already on ACEI will be included. Exclusion criteria include severe heart failure precluding ACEI use, hypotension, renal impairment, hypersensitivity to ACEI. For those naive to ACEI up-titration to an optimal dose will be performed, those already on ACEI will be switched to an expected equivalent dose of enalapril ODMT and optimised. In the first 8 weeks of treatment, a PK profile will be obtained at the first dose (ACEI naive patients) or when an optimal dose is reached. Furthermore, population PK will be done with concentrations detected over the whole treatment period. PD and safety data will be obtained at least at 2-weeks intervals. Subsequently, an intended number of 85 patients will be followed-up up to 10 months to demonstrate long-term safety, based on the occurrence of (severe) adverse events and monitoring of vital signs and renal function. Ethics and dissemination: Clinical Trial Authorisation and a favourable ethics committee opinion were obtained in all five participating countries. Results of the studies will be submitted for publication in a peer-reviewed journal. Trial registration numbers: EudraCT 2015-002335-17, EudraCT 2015-002396-18, EudraCT 2015-002397-21
    corecore