17 research outputs found
Exploring the utility of assistive artificial intelligence for ultrasound scanning in regional anesthesia
This work was funded by Intelligent Ultrasound Limited (Cardiff, UK). Data from this study were included in medical device regulatory approval submissions in the USA.Introduction: Ultrasound-guided regional anesthesia (UGRA) involves the acquisition and interpretation of ultrasound images to delineate sonoanatomy. This study explores the utility of a novel artificial intelligence (AI) device designed to assist in this task (ScanNav Anatomy Peripheral Nerve Block; ScanNav), which applies a color overlay on real-time ultrasound to highlight key anatomical structures. Methods: Thirty anesthesiologists, 15 non-experts and 15 experts in UGRA, performed 240 ultrasound scans across nine peripheral nerve block regions. Half were performed with ScanNav. After scanning each block region, participants completed a questionnaire on the utility of the device in relation to training, teaching, and clinical practice in ultrasound scanning for UGRA. Ultrasound and color overlay output were recorded from scans performed with ScanNav. Experts present during the scans (real-time experts) were asked to assess potential for increased risk associated with use of the device (eg, needle trauma to safety structures). This was compared with experts who viewed the AI scans remotely. Results: Non-experts were more likely to provide positive and less likely to provide negative feedback than experts (p=0.001). Positive feedback was provided most frequently by non-experts on the potential role for training (37/60, 61.7%); for experts, it was for its utility in teaching (30/60, 50%). Real-time and remote experts reported a potentially increased risk in 12/254 (4.7%) vs 8/254 (3.1%, p=0.362) scans, respectively. Discussion: ScanNav shows potential to support non-experts in training and clinical practice, and experts in teaching UGRA. Such technology may aid the uptake and generalizability of UGRA. TRIAL REGISTRATION NUMBER: NCT04918693.Peer reviewe
Variability between human experts and artificial intelligence in identification of anatomical structures by ultrasound in regional anaesthesia: a framework for evaluation of assistive artificial intelligence
Background:
ScanNavTMAnatomy Peripheral Nerve Block (ScanNav™) is an artificial intelligence (AI)-based device that produces a colour overlay on real-time B-mode ultrasound to highlight key anatomical structures for regional anaesthesia. This study compares consistency of identification of sono-anatomical structures between expert ultrasonographers and ScanNav™.
Methods:
Nineteen experts in ultrasound-guided regional anaesthesia (UGRA) annotated 100 structures in 30 ultrasound videos across six anatomical regions. These annotations were compared with each other to produce a quantitative assessment of the level of agreement amongst human experts. The AI colour overlay was then compared with all expert annotations. Differences in human–human and human–AI agreement are presented for each structure class (artery, muscle, nerve, fascia/serosal plane) and structure. Clinical context is provided through subjective assessment data from UGRA experts.
Results:
For human–human and human–AI annotations, agreement was highest for arteries (mean Dice score 0.88/0.86), then muscles (0.80/0.77), and lowest for nerves (0.48/0.41). Wide discrepancy exists in consistency for different structures, both with human–human and human–AI comparisons; highest for sartorius muscle (0.91/0.92) and lowest for the radial nerve (0.21/0.27).
Conclusions:
Human experts and the AI system both showed the same pattern of agreement in sono-anatomical structure identification. The clinical significance of the differences presented must be explored; however the perception that human expert opinion is uniform must be challenged. Elements of this assessment framework could be used for other devices to allow consistent evaluations that inform clinical training and practice. Anaesthetists should be actively engaged in the development and adoption of new AI technology
Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anaesthesia
Background
Ultrasound-guided regional anaesthesia relies on the visualisation of key landmark, target, and safety structures on ultrasound. However, this can be challenging, particularly for inexperienced practitioners. Artificial intelligence (AI) is increasingly being applied to medical image interpretation, including ultrasound. In this exploratory study, we evaluated ultrasound scanning performance by non-experts in ultrasound-guided regional anaesthesia, with and without the use of an assistive AI device.
Methods
Twenty-one anaesthetists, all non-experts in ultrasound-guided regional anaesthesia, underwent a standardised teaching session in ultrasound scanning for six peripheral nerve blocks. All then performed a scan for each block; half of the scans were performed with AI assistance and half without. Experts assessed acquisition of the correct block view and correct identification of sono-anatomical structures on each view. Participants reported scan confidence, experts provided a global rating score of scan performance, and scans were timed.
Results
Experts assessed 126 ultrasound scans. Participants acquired the correct block view in 56/62 (90.3%) scans with the device compared with 47/62 (75.1%) without (P=0.031, two data points lost). Correct identification of sono-anatomical structures on the view was 188/212 (88.8%) with the device compared with 161/208 (77.4%) without (P=0.002). There was no significant overall difference in participant confidence, expert global performance score, or scan time.
Conclusions
Use of an assistive AI device was associated with improved ultrasound image acquisition and interpretation. Such technology holds potential to augment performance of ultrasound scanning for regional anaesthesia by non-experts, potentially expanding patient access to these techniques
Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia:an external validation study
Intelligent Ultrasound Limited (Cardiff, UK) via a grant to JSB administered by the University of Oxford (R70327/CN002).BACKGROUND: Ultrasonound is used to identify anatomical structures during regional anaesthesia and to guide needle insertion and injection of local anaesthetic. ScanNav Anatomy Peripheral Nerve Block (Intelligent Ultrasound, Cardiff, UK) is an artificial intelligence-based device that produces a colour overlay on real-time B-mode ultrasound to highlight anatomical structures of interest. We evaluated the accuracy of the artificial-intelligence colour overlay and its perceived influence on risk of adverse events or block failure. METHODS: Ultrasound-guided regional anaesthesia experts acquired 720 videos from 40 volunteers (across nine anatomical regions) without using the device. The artificial-intelligence colour overlay was subsequently applied. Three more experts independently reviewed each video (with the original unmodified video) to assess accuracy of the colour overlay in relation to key anatomical structures (true positive/negative and false positive/negative) and the potential for highlighting to modify perceived risk of adverse events (needle trauma to nerves, arteries, pleura, and peritoneum) or block failure. RESULTS: The artificial-intelligence models identified the structure of interest in 93.5% of cases (1519/1624), with a false-negative rate of 3.0% (48/1624) and a false-positive rate of 3.5% (57/1624). Highlighting was judged to reduce the risk of unwanted needle trauma to nerves, arteries, pleura, and peritoneum in 62.9-86.4% of cases (302/480 to 345/400), and to increase the risk in 0.0-1.7% (0/160 to 8/480). Risk of block failure was reported to be reduced in 81.3% of scans (585/720) and to be increased in 1.8% (13/720). CONCLUSIONS: Artificial intelligence-based devices can potentially aid image acquisition and interpretation in ultrasound-guided regional anaesthesia. Further studies are necessary to demonstrate their effectiveness in supporting training and clinical practice. CLINICAL TRIAL REGISTRATION: NCT04906018.Publisher PDFPeer reviewe