3 research outputs found

    Organisational and occupational risk factors associated with work related injuries among public hospital employees in Costa Rica

    Get PDF
    Aims: To explore the relation between occupational and organisational factors and work related injuries (WRI) among public hospital employees in Costa Rica.Methods: A cross-sectional survey was conducted among a stratified random sample of 1000 employees from 10 of the 29 public hospitals in Costa Rica. A previously validated, self-administered questionnaire which included occupational and organisational factors and sociodemographic variables was used. From the final eligible sample ( n = 859), a total of 842 ( response rate 98%) questionnaires were returned; 475 workers were analysed after excluding not-at-risk workers and incomplete questionnaires. WRI were computed for the past six months.Results: Workers exposed to chemicals (RR = 1.36) and physical hazards ( RR = 1.26) had higher WRI rate ratios than non-exposed workers. Employees reporting job tasks that interfered with safety practices ( RR = 1.46), and a lack of safety training ( RR = 1.41) had higher WRI rate ratios than their counterparts. Low levels of safety climate ( RR = 1.51) and safety practices ( RR = 1.27) were individually associated with an increased risk of WRI. Also, when evaluated jointly, low levels of both safety climate and safety practices showed the highest association with WRI ( RR = 1.92).Conclusions: When evaluated independently, most of the occupational exposures and organisational factors investigated were significantly correlated with an increased injury risk. As expected, some of these associations disappeared when evaluated jointly. Exposure to chemical and physical hazards, lack of safety training, and low levels of safety climate and safety practices remained significant risk factors for WRI. These results will be important to consider in developing future prevention interventions in this setting

    Development of a source-exposure matrix for occupational exposure assessment of electromagnetic fields in the INTEROCC study

    No full text
    To estimate occupational exposures to electromagnetic fields (EMF) for the INTEROCC study, a database of source-based measurements extracted from published and unpublished literature resources had been previously constructed. The aim of the current work was to summarize these measurements into a source-exposure matrix (SEM), accounting for their quality and relevance. A novel methodology for combining available measurements was developed, based on order statistics and log-normal distribution characteristics. Arithmetic and geometric means, and estimates of variability and maximum exposure were calculated by EMF source, frequency band and dosimetry type. The mean estimates were weighted by our confidence in the pooled measurements. The SEM contains confidence-weighted mean and maximum estimates for 312 EMF exposure sources (from 0 Hz to 300 GHz). Operator position geometric mean electric field levels for radiofrequency (RF) sources ranged between 0.8 V/m (plasma etcher) and 320 V/m (RF sealer), while magnetic fields ranged from 0.02 A/m (speed radar) to 0.6 A/m (microwave heating). For extremely low frequency sources, electric fields ranged between 0.2 V/m (electric forklift) and 11,700 V/m (high-voltage transmission line-hotsticks), whereas magnetic fields ranged between 0.14 μT (visual display terminals) and 17 μT (tungsten inert gas welding). The methodology developed allowed the construction of the first EMF-SEM and may be used to summarize similar exposure data for other physical or chemical agents.This work was funded by the National Institutes for Health (NIH) Grant No. 1R01CA124759-01. Coding of the French occupational data was in part funded by AFSSET (Convention N° ST-2005-004). The INTERPHONE study was supported by funding from the European Fifth Framework Program, ‘Quality of Life and Management of Living Resources’ (contract 100 QLK4-CT-1999901563) and the International Union against Cancer (UICC). The UICC received funds for this purpose from the Mobile Manufacturers’ Forum and GSM Association. Provision of funds to the INTERPHONE study investigators via the UICC was governed by agreements that guaranteed INTERPHONE’s complete scientific independence (http://interphone.iarc.fr/ interphone_funding.php). In Australia, funding was received from the Australian National Health and Medical Research 5 Council (EME Grant 219129) with funds originally derived from mobile phone service licence fees; a University of Sydney Medical Foundation Program; the Cancer Council NSW and The Cancer Council Victoria. In Montreal, Canada, funding was received from the Canadian Institutes of Health Research (project MOP-42525); the Canada Research Chair programme; the Guzzo-CRS Chair in Environment and Cancer; the Fonds de la recherche en sante du Quebec; the Société de recherché sur le cancer; in Ottawa and Vancouver, Canada, from the Canadian Institutes of Health Research (CIHR), the latter including partial support from the Canadian Wireless Telecommunications Association; the NSERC/SSHRC/McLaughlin Chair in Population Health Risk Assessment at the University of Ottawa. In France, funding was received by l’Association pour la Recherche sur le Cancer (ARC) (Contrat N85142) and three network operators (Orange, SFR, Bouygues Telecom). In Germany, funding was received from the German Mobile Phone Research Program (Deutsches Mobilfunkforschungsprogramm) of the German Federal Ministry for the Environment, Nuclear 45 Safety, and Nature Protection; the Ministry for the Environment and Traffic of the state of Baden- Wurttemberg; the Ministry for the Environment of the state of North Rhine-Westphalia; the MAIFOR Program (Mainzer Forschungsforderungsprogramm) of the University of Mainz. In New Zealand, funding was provided by the Health Research Council, Hawkes Bay Medical Research Foundation, the Wellington Medical Research Foundation, the Waikato Medical Research Foundation and the Cancer Society of New Zealand. Additional funding for the UK study was received from the Mobile Telecommunications, Health and Research (MTHR) program, funding from the Health and Safety Executive, the Department of Health, the UK Network Operators (O2, Orange, T-Mobile, Vodafone, ‘3’) and the Scottish Executive. All industry funding was governed by contracts guaranteeing the complete scientific independence of the investigator

    Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies

    No full text
    corecore