7 research outputs found

    Core Collapse and Then? The Route to Massive Star Explosions

    Get PDF
    The rapidly growing base of observational data for supernova explosions of massive stars demands theoretical explanations. Central of these is a self-consistent model for the physical mechanism that provides the energy to start and drive the disruption of the star. We give arguments why the delayed neutrino-heating mechanism should still be regarded as the standard paradigm to explain most explosions of massive stars and show how large-scale and even global asymmetries can result as a natural consequence of convective overturn in the neutrino-heating region behind the supernova shock. Since the explosion is a threshold phenomenon and depends sensitively on the efficiency of the energy transfer by neutrinos, even relatively minor differences in numerical simulations can matter on the secular timescale of the delayed mechanism. To enhance this point, we present some results of recent one- and two-dimensional computations, which we have performed with a Boltzmann solver for the neutrino transport and a state-of-the-art description of neutrino-matter interactions. Although our most complete models fail to explode, the simulations demonstrate that one is encouragingly close to the critical threshold because a modest variation of the neutrino transport in combination with postshock convection leads to a weak neutrino-driven explosion with properties that fulfill important requirements from observations.Comment: 14 pages; 3 figures. Invited Review, in: ``From Twilight to Highlight: The Physics of Supernovae'', Eds. W. Hillebrandt and B. Leibundgut, Springer Series ``ESO Astrophysics Symposia'', Berli

    Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?

    Get PDF
    Two-dimensional hydrodynamic simulations of stellar core-collapse with and without rotation are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem of the neutrino-driven explosion mechanism.Comment: PRL submitted; 3 eps figures, 1 colored, high-quality available upon reques

    Damping of supernova neutrino transitions in stochastic shock-wave density profiles

    Full text link
    Supernova neutrino flavor transitions during the shock wave propagation are known to encode relevant information not only about the matter density profile but also about unknown neutrino properties, such as the mass hierarchy (normal or inverted) and the mixing angle theta_13. While previous studies have focussed on "deterministic" density profiles, we investigate the effect of possible stochastic matter density fluctuations in the wake of supernova shock waves. In particular, we study the impact of small-scale fluctuations on the electron (anti)neutrino survival probability, and on the observable spectra of inverse-beta-decay events in future water-Cherenkov detectors. We find that such fluctuations, even with relatively small amplitudes, can have significant damping effects on the flavor transition pattern, and can partly erase the shock-wave imprint on the observable time spectra, especially for sin^2(theta_13) > O(10^-3).Comment: v2 (23 pages, including 6 eps figures). Typos removed, references updated, matches the published versio

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link

    Hydrodynamics of core-collapse supernovae and their progenitors

    No full text
    corecore