13 research outputs found

    Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructures

    Full text link
    Ion implantation is a versatile and powerful technique for producing nanocrystal precipitates embedded in the near-surface region of materials. Radiation effects that occur during the implantation process can lead to complex microstructures and particle size distributions, and in the present work, we focus on the application of these effects to produce novel microstructural properties for insulating or semiconducting nanocrystals formed in optical host materials. Nanocrystal precipitates can be produced in two ways: by irradiation of pure ( i.e. , non-implanted) crystalline or amorphous materials, or by ion implantation followed by either thermal annealing or subsequent additional irradiation. Different methods for the formation of novel structural relationships between embedded nanocrystals and their hosts have been developed, and the results presented here demonstrate the general flexibility of ion implantation and irradiation techniques for producing unique near-surface nanocomposite microstructures in irradiated host materials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42336/1/10019-3-4-190_00030190.pd

    A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite

    Full text link
    The study of radiation effects in solids is important for the development of 'radiation-resistant' materials for fission-reactor applications'. The effects of heavy-ion irradiation in the isostructural orthosilicates zircon (ZrSiO4), hafnon (HfSiO4) and thorite (ThSiO4) are particularly important because these minerals are under active investigation for use as a waste form for plutonium-239 resulting from the dismantling of nuclear weapons(2-4). During ion irradiation, localized 'cascades' of displaced atoms can form as a result of ballistic collisions in the target material, and the temperature inside these regions may for a short time exceed the bulk melting temperature. Whether these cascades do indeed generate a localized liquid state(5-8) has, however, remained unclear. Here we investigate the irradiation-induced decomposition of zircon and hafnon, and find evidence for formation of a liquidlike state in the displacement cascades. Our results explain the frequent occurrence of ZrO2 in natural amorphous zircong(9-12) Moreover, we conclude that zircon-based nuclear waste forms should be maintained within strict temperature Limits, to avoid potentially detrimental irradiation-induced amorphization or phase decomposition of the zircon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62853/1/395056a0.pd

    Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    No full text
    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244 Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238 Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay

    Surface alteration of borosilicate and phosphate nuclear waste glasses by hydration and irradiation

    No full text
    We examined the degradation of nuclear waste borosilicate and phosphate glasses containing strong alpha-emitter 238Pu at a specific activity of 6.33 × 105 MBq/g in comparison with similar non-radioactive, non-radioactive irradiated and radioactive samples containing beta- and gamma-emitters, namely radionuclides 134Cs and 137Cs. For irradiation and leaching experiments, we used borosilicate and phosphate glasses, which are well-known and currently used to immobilize high-level radioactive waste. The main focus was the observation of the surface of altered glasses. Comparative analysis of hydrolytic surface alteration of borosilicate and phosphate nuclear waste glasses reveals that the behavior of radioactive samples differs significantly from that of non-radioactive glasses
    corecore