67 research outputs found
Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study
The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions
AIRBORNE HYPERSPECTRAL REMOTE SENSING FOR IDENTIFICATION GRASSLAND VEGETATION
In our study we classified grassland vegetation types of an alkali landscape (Eastern Hungary), using different image classification
methods for hyperspectral data. Our aim was to test the applicability of hyperspectral data in this complex system using various
image classification methods. To reach the highest classification accuracy, we compared the performance of traditional image
classifiers, machine learning algorithm, feature extraction (MNF-transformation) and various sizes of training dataset. Hyperspectral
images were acquired by an AISA EAGLE II hyperspectral sensor of 128 contiguous bands (400–1000 nm), a spectral sampling of 5
nm bandwidth and a ground pixel size of 1 m. We used twenty vegetation classes which were compiled based on the characteristic
dominant species, canopy height, and total vegetation cover. Image classification was applied to the original and MNF (minimum
noise fraction) transformed dataset using various training sample sizes between 10 and 30 pixels. In the case of the original bands,
both SVM and RF classifiers provided high accuracy for almost all classes irrespectively of the number of the training pixels. We
found that SVM and RF produced the best accuracy with the first nine MNF transformed bands. Our results suggest that in complex
open landscapes, application of SVM can be a feasible solution, as this method provides higher accuracies compared to RF and
MLC. SVM was not sensitive for the size of the training samples, which makes it an adequate tool for cases when the available
number of training pixels are limited for some classes
Consequences of Water between Two Hydrophobic Surfaces on Adhesion and Wetting
The contact of two hydrophobic surfaces in water is of importance in biology, catalysis, material science, and geology. A tenet of hydrophobic attraction is the release of an ordered water layer, leading to a dry contact between two hydrophobic surfaces. Although the water-free contact has been inferred from numerous experimental and theoretical studies, this has not been directly measured. Here, we use surface sensitive sum frequency generation spectroscopy to directly probe the contact interface between hydrophobic poly(dimethylsiloxane) (PDMS) and two hydrophobic surfaces (a self-assembled monolayer, OTS, and a polymer coating, PVNODC). We show that the interfacial structures for OTS and PVNODC are identical in dry contact but that they differ dramatically in wet contact. In water, the PVNODC surface partially rearranges at grain boundaries, trapping water at the contact interface leading to a 50% reduction in adhesion energy compared to OTS–PDMS contact. The Young–Dupré equation, used extensively to calculate the thermodynamic work of adhesion, predicts no differences between the adhesion energy for these two hydrophobic surfaces, indicating a failure of this well-known equation when there is a heterogeneous contact. This study exemplifies the importance of interstitial water in controlling adhesion and wetting
Solution and solid-state characterization of Eu(II) chelates: a possible route towards redox responsive MRI contrast agents.
We report the first solid state X-ray crystal structure for a Eu(II) chelate, [C(NH2)3]3[Eu(II)(DTPA)(H2O)].8H2O, in comparison with those for the corresponding Sr analogue, [C(NH2)3]3[Sr(DTPA)(H2O).8H2O and for [Sr(ODDA)].8H2O (DTPA5 = diethylenetriamine-N,N,N',N",N"-pentaacetate, ODDA2- =1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diacetate ). The two DTPA complexes are isostructural due to the similar ionic size and charge of Sr(2+) and Eu(2+). The redox stability of [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- complexes has been investigated by cyclovoltammetry and UV/Vis spectrophotometry (ODDM4- =1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane-7,16-++ +dimalonate). The macrocyclic complexes are much more stable against oxidation than [Eu(II)(DTPA)(H2O)]3- (the redox potentials are E1/2 =-0.82 V, -0.92 V, and -1.35 V versus Ag/AgCl electrode for [Eu(III/II)(ODDA)(H2O)],[Eu(III/II)(ODDM)], and [Eu(III/II)(DTPA)(H2O)], respectively, compared with -0.63 V for Eu(III/II) aqua). The thermodynamic stability constants of [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2- were also determined by pH potentiometry. They are slightly higher for the EuII complexes than those for the corresponding Sr analogues (logK(ML)=9.85, 13.07, 8.66, and 11.34 for [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2-, respectively, 0.1M (CH3)4NCl). The increased thermodynamic and redox stability of the Eu(II) complex formed with ODDA as compared with the traditional ligand DTPA can be of importance when biomedical application is concerned. A variable-temperature 17O-NMR and 1H-nuclear magnetic relaxation dispersion (NMRD) study has been performed on [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- in aqueous solution. [Eu(II)(ODDM)]2- has no inner-sphere water molecule which allowed us to use it as an outer-sphere model for [Eu(II)(ODDA)(H2O)]. The water exchange rate (k298(ex)= 0.43 x 10(9)s(-1)) is one third of that obtained for [Eu(II)(DTPA)(H2O)]3-. The variable pressure 17O-NMR study yielded a negative activation volume, deltaV (not=) = -3.9cm3mol(-1); this indicates associatively activated water exchange. This water exchange rate is in the optimal range to attain maximum proton relaxivities, which are, however, strongly limited by the fast rotation of the small molecular weight complex
- …