172 research outputs found

    Analytical mean-field approach to the phase-diagram of ultracold bosons in optical superlattices

    Full text link
    We report a multiple-site mean-field analysis of the zero-temperature phase diagram for ultracold bosons in realistic optical superlattices. The system of interacting bosons is described by a Bose-Hubbard model whose site-dependent parameters reflect the nontrivial periodicity of the optical superlattice. An analytic approach is formulated based on the analysis of the stability of a fixed-point of the map defined by the self-consistency condition inherent in the mean-field approximation. The experimentally relevant case of the period-2 one-dimensional superlattice is briefly discussed. In particular, it is shown that, for a special choice of the superlattice parameters, the half-filling insulator domain features an unusual loophole shape that the single-site mean-field approach fails to capture.Comment: 7 pages, 1 figur

    Strong-coupling expansions for the topologically inhomogeneous Bose-Hubbard model

    Full text link
    We consider a Bose-Hubbard model with an arbitrary hopping term and provide the boundary of the insulating phase thereof in terms of third-order strong coupling perturbative expansions for the ground state energy. In the general case two previously unreported terms occur, arising from triangular loops and hopping inhomogeneities, respectively. Quite interestingly the latter involves the entire spectrum of the hopping matrix rather than its maximal eigenpair, like the remaining perturbative terms. We also show that hopping inhomogeneities produce a first order correction in the local density of bosons. Our results apply to ultracold bosons trapped in confining potentials with arbitrary topology, including the realistic case of optical superlattices with uneven hopping amplitudes. Significant examples are provided. Furthermore, our results can be extented to magnetically tuned transitions in Josephson junction arrays.Comment: 5 pages, 2 figures,final versio

    Persistence of mean-field features in the energy spectrum of small arrays of Bose-Einstein condensates

    Get PDF
    The Bose-Hubbard Hamiltonian capturing the essential physics of the arrays of interacting Bose-Einstein condensates is addressed, focusing on arrays consisting of two (dimer) and three (trimer) sites. In the former case, some results concerning the persistence of mean-field features in the energy spectrum of the symmetric dimer are extended to the asymmetric version of the system, where the two sites are characterized by different on-site energies. Based on a previous systematic study of the mean-field limit of the trimer, where the dynamics is exhaustively described in terms of its fixed points for every choice of the significant parameters, an interesting mapping between the dimer and the trimer is emphasized and used as a guide in investigating the persistence of mean-field features in the rather complex energy spectrum of the trimer. These results form the basis for the systematic investigation of the purely quantum trimer extending and completing the existing mean-field analysis. In this respect we recall that, similar to larger arrays, the trimer is characterized by a non-integrable mean-field dynamics featuring chaotic trajectories. Hence, the correspondence between mean-field fixed points and quantum energy levels emphasized in the present work may provide a key to investigate the quantum counterpart of classical instability.Comment: 12 pages, 6 figures, to appear on Journal of Physics B (Special Issue: Levico BEC workshop). Publication status update

    Glassy features of a Bose Glass

    Full text link
    We study a two-dimensional Bose-Hubbard model at a zero temperature with random local potentials in the presence of either uniform or binary disorder. Many low-energy metastable configurations are found with virtually the same energy as the ground state. These are characterized by the same blotchy pattern of the, in principle, complex nonzero local order parameter as the ground state. Yet, unlike the ground state, each island exhibits an overall random independent phase. The different phases in different coherent islands could provide a further explanation for the lack of coherence observed in experiments on Bose glasses.Comment: 14 pages, 4 figures

    Fractional-filling Mott domains in two dimensional optical superlattices

    Full text link
    Ultracold bosons in optical superlattices are expected to exhibit fractional-filling insulating phases for sufficiently large repulsive interactions. On strictly 1D systems, the exact mapping between hard-core bosons and free spinless fermions shows that any periodic modulation in the lattice parameters causes the presence of fractional-filling insulator domains. Here, we focus on two recently proposed realistic 2D structures where such mapping does not hold, i.e. the two-leg ladder and the trimerized kagome' lattice. Based on a cell strong-coupling perturbation technique, we provide quantitatively satisfactory phase diagrams for these structures, and give estimates for the occurrence of the fractional-filling insulator domains in terms of the inter-cell/intra-cell hopping amplitude ratio.Comment: 4 pages, 3 figure

    Topological Reduction of Tight-Binding Models on Complex Networks

    Full text link
    Complex molecules and mesoscopic structures are naturally described by general networks of elementary building blocks and tight-binding is one of the simplest quantum model suitable for studying the physical properties arising from the network topology. Despite the simplicity of the model, topological complexity can make the evaluation of the spectrum of the tight-binding Hamiltonian a rather hard task, since the lack of translation invariance rules out such a powerful tool as Fourier transform. In this paper we introduce a rigorous analytical technique, based on topological methods, for the exact solution of this problem on branched structures. Besides its analytic power, this technique is also a promising engineering tool, helpful in the design of netwoks displaying the desired spectral features.Comment: 19 pages, 14 figure

    Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates

    Get PDF
    We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms to realize the transition from an unstable to stable behavior and analyze specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime the system configuration do not depend on the model interaction parameters, and the population oscillation amplitude is related to the condensate-phase difference. This fact makes possible estimating the latter quantity, since the measure of the oscillating amplitudes is experimentally accessible.Comment: 25 pages, 12 figure

    Ground-State Fidelity and Bipartite Entanglement in the Bose-Hubbard Model

    Full text link
    We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e. the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point.We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.Comment: 7 pages, 5 figures (endfloats used due to problems with figures and latex. Sorry about that); final version, similar to the published on

    On the dispute between Boltzmann and Gibbs entropy

    Get PDF
    Very recently, the validity of the concept of negative temperature has been challenged by several authors since they consider Boltzmann's entropy (that allows negative temperatures) inconsistent from a mathematical and statistical point of view, whereas they consider Gibbs' entropy (that does not admit negative temperatures) the correct definition for microcanonical entropy. In the present paper we prove that for systems with equivalence of the statistical ensembles Boltzmann entropy is the correct microcanonical entropy. Analytical results on two systems supporting negative temperatures, confirm the scenario we propose. In addition, we corroborate our proof by numeric simulations on an explicit lattice system showing that negative temperature equilibrium states are accessible and obey standard statistical mechanics prevision.Comment: To appear in Annals of Physic
    • …
    corecore