944 research outputs found

    Effects of the Free Trade Area of the Americas on Forest Resources

    Get PDF
    The effects of the Free Trade Area of the Americas (FTAA) agreement on the forest sectors and resources of member countries are investigated. A model of wood supply within the spatial partial-equilibrium Global Forest Products Model is developed to link international trade and deforestation. The direct effects of tariff changes and the indirect effects of income changes induced by trade liberalization are considered. The FTAA has a small positive impact on the region's forest resources. Higher harvests of industrial roundwood in most countries are offset by increased afforestation due to the income effect of trade liberalization (captured by the environmental Kuznets curve).trade liberalization, international trade, forest resources, forest sector trade model, International Relations/Trade, Resource /Energy Economics and Policy,

    Spontaneous polarization and piezoelectricity in boron nitride nanotubes

    Full text link
    Ab initio calculations of the spontaneous polarization and piezoelectric properties of boron nitride nanotubes show that they are excellent piezoelectric systems with response values larger than those of piezoelectric polymers. The intrinsic chiral symmetry of the nanotubes induces an exact cancellation of the total spontaneous polarization in ideal, isolated nanotubes of arbitrary indices. Breaking of this symmetry by inter-tube interaction or elastic deformations induces spontaneous polarization comparable to those of wurtzite semiconductors.Comment: 5 pages in PRB double column format, 3 figure

    Surface Polar Phonon Dominated Electron Transport in Graphene

    Full text link
    The effects of surface polar phonons on electronic transport properties of monolayer graphene are studied by using a Monte Carlo simulation. Specifically, the low-field electron mobility and saturation velocity are examined for different substrates (SiC, SiO2, and HfO2) in comparison to the intrinsic case. While the results show that the low-field mobility can be substantially reduced by the introduction of surface polar phonon scattering, corresponding degradation of the saturation velocity is not observed for all three substrates at room temperature. It is also found that surface polar phonons can influence graphene electrical resistivity even at low temperature, leading potentially to inaccurate estimation of the acoustic phonon deformation potential constant

    Transition in a numerical model of contact line dynamics and forced dewetting

    Full text link
    We investigate the transition to a Landau-Levich-Derjaguin film in forced dewetting using a quadtree adaptive solution to the Navier-Stokes equations with surface tension. We use a discretization of the capillary forces near the receding contact line that yields an equilibrium for a specified contact angle θΔ\theta_\Delta called the numerical contact angle. Despite the well-known contact line singularity, dynamic simulations can proceed without any explicit additional numerical procedure. We investigate angles from 1515^\circ to 110110^\circ and capillary numbers from 0.000850.00085 to 0.20.2 where the mesh size Δ\Delta is varied in the range of 0.00350.0035 to 0.060.06 of the capillary length lcl_c. To interpret the results, we use Cox's theory which involves a microscopic distance rmr_m and a microscopic angle θe\theta_e. In the numerical case, the equivalent of θe\theta_e is the angle θΔ\theta_\Delta and we find that Cox's theory also applies. We introduce the scaling factor or gauge function ϕ\phi so that rm=Δ/ϕr_m = \Delta/\phi and estimate this gauge function by comparing our numerics to Cox's theory. The comparison provides a direct assessment of the agreement of the numerics with Cox's theory and reveals a critical feature of the numerical treatment of contact line dynamics: agreement is poor at small angles while it is better at large angles. This scaling factor is shown to depend only on θΔ\theta_\Delta and the viscosity ratio qq. In the case of small θe\theta_e, we use the prediction by Eggers [Phys. Rev. Lett., vol. 93, pp 094502, 2004] of the critical capillary number for the Landau-Levich-Derjaguin forced dewetting transition. We generalize this prediction to large θe\theta_e and arbitrary qq and express the critical capillary number as a function of θe\theta_e and rmr_m. An analogy can be drawn between rmr_m and the numerical slip length.Comment: This version of the paper includes the corrections indicated in Ref. [1

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure
    corecore