626 research outputs found
Extrapolations of Lattice Meson Form Factors
We use chiral perturbation theory to study the extrapolations necessary to
make physical predictions from lattice QCD data for the electromagnetic form
factors of pseudoscalar mesons. We focus on the quark mass, momentum, lattice
spacing, and volume dependence and apply our results to simulations employing
mixed actions of Ginsparg-Wilson valence quarks and staggered sea quarks. To
determine charge radii at quark masses on the lattices currently used, we find
that all extrapolations except the one to infinite volume make significant
contributions to the systematic error.Comment: 14pp, discussion and Ref. added for disconnected diagram
A Giant Outburst at Millimeter Wavelengths in the Orion Nebula
BIMA observations of the Orion nebula discovered a giant flare from a young
star previously undetected at millimeter wavelengths. The star briefly became
the brightest compact object in the nebula at 86 GHz. Its flux density
increased by more than a factor of 5 on a timescale of hours, to a peak of 160
mJy. This is one of the most luminous stellar radio flares ever observed.
Remarkably, the Chandra X-ray observatory was in the midst of a deep
integration of the Orion nebula at the time of the BIMA discovery; the source's
X-ray flux increased by a factor of 10 approximately 2 days before the radio
detection. Follow-up radio observations with the VLA and BIMA showed that the
source decayed on a timescale of days, then flared again several times over the
next 70 days, although never as brightly as during the discovery. Circular
polarization was detected at 15, 22, and 43 GHz, indicating that the emission
mechanism was cyclotron. VLBA observations 9 days after the initial flare yield
a brightness temperature Tb > 5 x 10^7 K at 15 GHz. Infrared spectroscopy
indicates the source is a K5V star with faint Br gamma emission, suggesting
that it is a weak-line T Tauri object. Zeeman splitting measurements in the
infrared spectrum find B ~ 2.6 +/- 1.0 kG. The flare is an extreme example of
magnetic activity associated with a young stellar object. These data suggest
that short observations obtained with ALMA will uncover hundreds of flaring
young stellar objects in the Orion region.Comment: 29 pages, 7 figures, accepted for publication in Ap
Pion mass dependence of the semileptonic scalar form factor within finite volume
We calculate the scalar semileptonic kaon decay in finite volume at the
momentum transfer , using chiral perturbation
theory. At first we obtain the hadronic matrix element to be calculated in
finite volume. We then evaluate the finite size effects for two volumes with and and find that the difference between the finite
volume corrections of the two volumes are larger than the difference as quoted
in \cite{Boyle2007a}. It appears then that the pion masses used for the scalar
form factor in ChPT are large which result in large finite volume corrections.
If appropriate values for pion mass are used, we believe that the finite size
effects estimated in this paper can be useful for Lattice data to extrapolate
at large lattice size.Comment: 19 pages, 5 figures, accepted for publication in EPJ
Some Like it Hot: The X-Ray Emission of The Giant Star YY Mensae
(Abridged abstract) We present an analysis of the X-ray emission of the
rapidly rotating giant star YY Mensae observed by Chandra HETGS and XMM-Newton.
Although no obvious flare was detected, the X-ray luminosity changed by a
factor of two between the XMM-Newton and Chandra observations taken 4 months
apart. The coronal abundances and the emission measure distribution have been
derived from three different methods using optically thin collisional
ionization equilibrium models. The abundances show an inverse first ionization
potential (FIP) effect. We further find a high N abundance which we interpret
as a signature of material processed in the CNO cycle. The corona is dominated
by a very high temperature (20-40 MK) plasma, which places YY Men among the
magnetically active stars with the hottest coronae. Lower temperature plasma
also coexists, albeit with much lower emission measure. Line broadening is
reported, which we interpret as Doppler thermal broadening, although rotational
broadening due to X-ray emitting material high above the surface could be
present as well. We use two different formalisms to discuss the shape of the
emission measure distribution. The first one infers the properties of coronal
loops, whereas the second formalism uses flares as a statistical ensemble. We
find that most of the loops in the corona of YY Men have their maximum
temperature equal to or slightly larger than about 30 MK. We also find that
small flares could contribute significantly to the coronal heating in YY Men.
Although there is no evidence of flare variability in the X-ray light curves,
we argue that YY Men's distance and X-ray brightness does not allow us to
detect flares with peak luminosities Lx <= 10^{31} erg/s with current
detectors.Comment: Accepted paper to appear in Astrophysical Journal, issue Nov 10, 2004
(v615). This a revised version. Small typos are corrected. Figure 7 and its
caption and some related text in Sct 7.2 are changed, without incidence for
the conclusion
The Commensal Real-time ASKAP Fast Transients (CRAFT) survey
We are developing a purely commensal survey experiment for fast (<5s)
transient radio sources. Short-timescale transients are associated with the
most energetic and brightest single events in the Universe. Our objective is to
cover the enormous volume of transients parameter space made available by
ASKAP, with an unprecedented combination of sensitivity and field of view. Fast
timescale transients open new vistas on the physics of high brightness
temperature emission, extreme states of matter and the physics of strong
gravitational fields. In addition, the detection of extragalactic objects
affords us an entirely new and extremely sensitive probe on the huge reservoir
of baryons present in the IGM. We outline here our approach to the considerable
challenge involved in detecting fast transients, particularly the development
of hardware fast enough to dedisperse and search the ASKAP data stream at or
near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of
the key technologies and survey modes proposed for high time resolution science
with the SKA.Comment: accepted for publication in PAS
Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine
Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response
- …