9 research outputs found

    The null energy condition and instability

    Get PDF
    We extend previous work showing that violation of the null energy condition implies instability in a broad class of models, including gauge theories with scalar and fermionic matter as well as any perfect fluid. Simple examples are given to illustrate these results. The role of causality in our results is discussed. Finally, we extend the fluid results to more general systems in thermal equilibrium. When applied to the dark energy, our results imply that w is unlikely to be less than -1.Comment: 11 pages, 5 figures, Revte

    Entropy: From Black Holes to Ordinary Systems

    Full text link
    Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point we analyse in which way these results may give us the opportunity to gain a better understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we investigated the possibility to introduce an alternative definition of the entropy basically related to a local definition of the order in a spacetime model rather than a counting of microstates. We show that such an alternative approach exists and leads to the traditional results provided an equilibrium condition is assumed. This condition introduces a relation between a time interval and the reverse of the temperature. We show that such a relation extensively used in the black hole theory, mainly as a mathematical trick, has a very general and physical meaning here; in particular its derivation is not related to the existence of a canonical density matrix. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy and we show that an identical relation exists in the case of black holes. The derivation of such a relation seems impossible in the Gibbs ensemble approach of statistical thermodynamics. From these results we suggest that the definition of entropy in terms of order in spacetime should be more general that the Boltzmann one based on a counting of microstates. Finally we point out that these results are obtained by reversing the traditional route going from the Schr\"{o}dinger equation to statistical thermodynamics

    On Energy Conditions and Stability in Effective Loop Quantum Cosmology

    Full text link
    In isotropic loop quantum cosmology, non-perturbatively modified dynamics of a minimally coupled scalar field violates weak, strong and dominant energy conditions when they are stated in terms of equation of state parameter. The violation of strong energy condition helps to have non-singular evolution by evading singularity theorems thus leading to a generic inflationary phase. However, the violation of weak and dominant energy conditions raises concern, as in general relativity these conditions ensure causality of the system and stability of vacuum via Hawking-Ellis conservation theorem. It is shown here that the non-perturbatively modified kinetic term contributes negative pressure but positive energy density. This crucial feature leads to violation of energy conditions but ensures positivity of energy density, as scalar matter Hamiltonian remains bounded from below. It is also shown that the modified dynamics restricts group velocity for inhomogeneous modes to remain sub-luminal thus ensuring causal propagation across spatial distances.Comment: 29 pages, revtex4; few clarifications, references added, to appear in CQ

    A Single Scalar Field Model of Dark Energy with Equation of State Crossing -1

    Full text link
    In this paper we study the possibility of building models of dark energy with equation of state across -1 and propose explicitly a model with a single scalar field which gives rise to an equation of state larger than -1 in the past and less than -1 at the present time, consistent with the current observations.Comment: 4 pages, 1 figure, the version accepted by JCAP, presentation improved and references adde

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    A Comment or two on Holographic Dark Energy

    Full text link
    It has, quite recently, become fashionable to study a certain class of holographic-inspired models for the dark energy. These investigations have, indeed, managed to make some significant advances towards explaining the empirical data. Nonetheless, surprisingly little thought has been given to conceptual issues such as the composition and the very nature of the implicated energy source. In the current discourse, we attempt to fill this gap by the way of some speculative yet logically self-consistent arguments. Our construction takes us along a path that begins with an entanglement entropy and ends up at a Hubble-sized gas of exotic particles. Moreover, our interpretation of the dark energy turns out to be suggestive of a natural resolution to the cosmic-coincidence problem.Comment: 18 pages; (v2) an oversight in Section 2.1 is rectified and a few citations adde
    corecore