5 research outputs found

    Design and Development of Robotic Part Assembly System under Vision Guidance

    Get PDF
    Robots are widely used for part assembly across manufacturing industries to attain high productivity through automation. The automated mechanical part assembly system contributes a major share in production process. An appropriate vision guided robotic assembly system further minimizes the lead time and improve quality of the end product by suitable object detection methods and robot control strategies. An approach is made for the development of robotic part assembly system with the aid of industrial vision system. This approach is accomplished mainly in three phases. The first phase of research is mainly focused on feature extraction and object detection techniques. A hybrid edge detection method is developed by combining both fuzzy inference rule and wavelet transformation. The performance of this edge detector is quantitatively analysed and compared with widely used edge detectors like Canny, Sobel, Prewitt, mathematical morphology based, Robert, Laplacian of Gaussian and wavelet transformation based. A comparative study is performed for choosing a suitable corner detection method. The corner detection technique used in the study are curvature scale space, Wang-Brady and Harris method. The successful implementation of vision guided robotic system is dependent on the system configuration like eye-in-hand or eye-to-hand. In this configuration, there may be a case that the captured images of the parts is corrupted by geometric transformation such as scaling, rotation, translation and blurring due to camera or robot motion. Considering such issue, an image reconstruction method is proposed by using orthogonal Zernike moment invariants. The suggested method uses a selection process of moment order to reconstruct the affected image. This enables the object detection method efficient. In the second phase, the proposed system is developed by integrating the vision system and robot system. The proposed feature extraction and object detection methods are tested and found efficient for the purpose. In the third stage, robot navigation based on visual feedback are proposed. In the control scheme, general moment invariants, Legendre moment and Zernike moment invariants are used. The selection of best combination of visual features are performed by measuring the hamming distance between all possible combinations of visual features. This results in finding the best combination that makes the image based visual servoing control efficient. An indirect method is employed in determining the moment invariants for Legendre moment and Zernike moment. These moments are used as they are robust to noise. The control laws, based on these three global feature of image, perform efficiently to navigate the robot in the desire environment

    D* lite algorithm based path planning of mobile robot in static Environment

    Get PDF
    In this paper, we study the path planning for khepera II mobile robot in an unknown environment. The well known heuristic D* lite algorithm is implemented to make the mobile robot navigate through static obstacles and find the shortest path from an initial position to a target position by avoiding the obstacles. and to perform efficient re-planning during exploration. The proposed path finding strategy is designed in a grid-map form of an unknown environment with static unknown obstacles. The robot moves within the unknown environment by sensing and avoiding the obstacles coming across its way towards the target. When the mission is executed, it is necessary to plan an optimal or feasible path for itself avoiding obstructions in its way and minimizing a cost such as time, energy, and distance. In our study we have considered the distance metric as the cost functio

    Identification of discriminant features from stationary pattern of nucleotide bases and their application to essential gene classification

    Get PDF
    Introduction: Essential genes are essential for the survival of various species. These genes are a family linked to critical cellular activities for species survival. These genes are coded for proteins that regulate central metabolism, gene translation, deoxyribonucleic acid replication, and fundamental cellular structure and facilitate intracellular and extracellular transport. Essential genes preserve crucial genomics information that may hold the key to a detailed knowledge of life and evolution. Essential gene studies have long been regarded as a vital topic in computational biology due to their relevance. An essential gene is composed of adenine, guanine, cytosine, and thymine and its various combinations.Methods: This paper presents a novel method of extracting information on the stationary patterns of nucleotides such as adenine, guanine, cytosine, and thymine in each gene. For this purpose, some co-occurrence matrices are derived that provide the statistical distribution of stationary patterns of nucleotides in the genes, which is helpful in establishing the relationship between the nucleotides. For extracting discriminant features from each co-occurrence matrix, energy, entropy, homogeneity, contrast, and dissimilarity features are computed, which are extracted from all co-occurrence matrices and then concatenated to form a feature vector representing each essential gene. Finally, supervised machine learning algorithms are applied for essential gene classification based on the extracted fixed-dimensional feature vectors.Results: For comparison, some existing state-of-the-art feature representation techniques such as Shannon entropy (SE), Hurst exponent (HE), fractal dimension (FD), and their combinations have been utilized.Discussion: An extensive experiment has been performed for classifying the essential genes of five species that show the robustness and effectiveness of the proposed methodology

    A Quantitative Performance Analysis of Edge Detectors with Hybrid Edge Detector

    No full text

    Table1_Identification of discriminant features from stationary pattern of nucleotide bases and their application to essential gene classification.docx

    No full text
    Introduction: Essential genes are essential for the survival of various species. These genes are a family linked to critical cellular activities for species survival. These genes are coded for proteins that regulate central metabolism, gene translation, deoxyribonucleic acid replication, and fundamental cellular structure and facilitate intracellular and extracellular transport. Essential genes preserve crucial genomics information that may hold the key to a detailed knowledge of life and evolution. Essential gene studies have long been regarded as a vital topic in computational biology due to their relevance. An essential gene is composed of adenine, guanine, cytosine, and thymine and its various combinations.Methods: This paper presents a novel method of extracting information on the stationary patterns of nucleotides such as adenine, guanine, cytosine, and thymine in each gene. For this purpose, some co-occurrence matrices are derived that provide the statistical distribution of stationary patterns of nucleotides in the genes, which is helpful in establishing the relationship between the nucleotides. For extracting discriminant features from each co-occurrence matrix, energy, entropy, homogeneity, contrast, and dissimilarity features are computed, which are extracted from all co-occurrence matrices and then concatenated to form a feature vector representing each essential gene. Finally, supervised machine learning algorithms are applied for essential gene classification based on the extracted fixed-dimensional feature vectors.Results: For comparison, some existing state-of-the-art feature representation techniques such as Shannon entropy (SE), Hurst exponent (HE), fractal dimension (FD), and their combinations have been utilized.Discussion: An extensive experiment has been performed for classifying the essential genes of five species that show the robustness and effectiveness of the proposed methodology.</p
    corecore