18 research outputs found

    A new bovine conjunctiva model shows that Listeria monocytogenes invasion is associated with lysozyme resistance.

    Get PDF
    AbstractListerial keratoconjunctivitis (‘silage eye’) is a wide spread problem in ruminants causing economic losses to farmers and impacts negatively on animal welfare. It results from direct entry of Listeria monocytogenes into the eye, often following consumption of contaminated silage. An isolation protocol for bovine conjunctival swabbing was developed and used to sample both infected and healthy eyes bovine eyes (n=46). L. monocytogenes was only isolated from one healthy eye sample, and suggests that this organism can be present without causing disease. To initiate a study of this disease, an infection model was developed using isolated conjunctiva explants obtained from cattle eyes post slaughter. Conjunctiva were cultured and infected for 20h with a range of L. monocytogenes isolates (n=11), including the healthy bovine eye isolate and also strains isolated from other bovine sources, such as milk or clinical infections. Two L. monocytogenes isolates (one from a healthy eye and one from a cattle abortion) were markedly less able to invade conjunctiva explants, but one of those was able to efficiently infect Caco2 cells indicating that it was fully virulent. These two isolates were also significantly more sensitive to lysozyme compared to most other isolates tested, suggesting that lysozyme resistance is an important factor when infecting bovine conjunctiva. In conclusion, we present the first bovine conjunctiva explant model for infection studies and demonstrate that clinical L. monocytogenes isolates from cases of bovine keratoconjunctivitis are able to infect these tissues

    Why is asthma mortality higher in Puerto Ricans?

    No full text
    Asthma is a significant public health issue and the most common chronic disease in children. The disease burden of asthma is rising around the world and especially in certain populations. In the United States Puerto Rican Americans have the highest rates of mortality due to asthma, while Mexico Americans have the lowest asthma mortality in the U.S. The reasons for this have been the cause of much speculation in the past; however, no clear cause for these differences has been recognized. The present work reviews the literature bearing on this question to show that there are good reasons to believe that individuals with unusually responsive innate immune responses may be predisposed to the development of asthma. Also reviewed is the molecular basis for this connection. The evidence shows that the history and anthropology of the Puerto Rican people is quite different from that of any other surviving North American or Caribbean population, as it was a relatively isolated island population for 400 years with an environment that tended to eliminate individuals with weak innate immune systems. The Puerto Rican population successfully survived the Columbian exchange of microbes but may be poorly adapted to the modern pro-inflammatory diet coupled with exposure to cigarette smoke as well as cockroach and house dust mite feces

    A Population Genetics-Based and Phylogenetic Approach to Understanding the Evolution of Virulence in the Genus Listeria▿ †

    No full text
    The genus Listeria includes (i) the opportunistic pathogens L. monocytogenes and L. ivanovii, (ii) the saprotrophs L. innocua, L. marthii, and L. welshimeri, and (iii) L. seeligeri, an apparent saprotroph that nevertheless typically contains the prfA virulence gene cluster. A novel 10-loci multilocus sequence typing scheme was developed and used to characterize 67 isolates representing six Listeria spp. (excluding L. grayi) in order to (i) provide an improved understanding of the phylogeny and evolution of the genus Listeria and (ii) use Listeria as a model to study the evolution of pathogenicity in opportunistic environmental pathogens. Phylogenetic analyses identified six well-supported Listeria species that group into two main subdivisions, with each subdivision containing strains with and without the prfA virulence gene cluster. Stochastic character mapping and phylogenetic analysis of hly, a gene in the prfA cluster, suggest that the common ancestor of the genus Listeria contained the prfA virulence gene cluster and that this cluster was lost at least five times during the evolution of Listeria, yielding multiple distinct saprotrophic clades. L. welshimeri, which appears to represent the most ancient clade that arose from an ancestor with a prfA cluster deletion, shows a considerably lower average sequence divergence than other Listeria species, suggesting a population bottleneck and a putatively different ecology than other saprotrophic Listeria species. Overall, our data suggest that, for some pathogens, loss of virulence genes may represent a selective advantage, possibly by facilitating adaptation to a specific ecological niche

    Omadacycline

    No full text

    Effects of Immunomodulatory and Organism-Associated Molecules on the Permeability of an In Vitro Blood-Brain Barrier Model to Amphotericin B and Fluconazole â–¿

    No full text
    Amphotericin B (AMB) is used to treat fungal infections of the central nervous system (CNS). However, AMB shows poor penetration into the CNS and little is known about the factors affecting its permeation through the blood-brain barrier (BBB). Therefore, we studied immunomodulatory and organism-associated molecules affecting the permeability of an in vitro BBB model to AMB. We examined the effects of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan (ZYM), dexamethasone (DEX), cyclosporine, and tacrolimus on transendothelial electrical resistance (TEER); endothelial tight junctions; filamentous actin; and permeability to deoxycholate AMB (DAMB), liposomal AMB (LAMB), and fluconazole. Proinflammatory cytokines and organism-associated molecules significantly decreased the mean TEER by 40.7 to 100% (P ≤ 0.004). DEX increased the mean TEER by 18.2 to 26.4% (P ≤ 0.04). TNF-α and LPS increased the permeability to AMB by 8.2 to 14.5% compared to that for the controls (1.1 to 2.4%) (P ≤ 0.04). None of the other molecules affected the model's permeability to AMB. By comparison, the BBB model's permeability to fluconazole was >78% under all conditions studied, without significant differences between the controls and the experimental groups. LPS and TNF-α decreased tight-junction protein zona occludens 1 (ZO-1) between endothelial cells. In conclusion, IL-1β, ZYM, and LTA increased the permeability of the BBB to small ions but not to AMB, whereas TNF-α and LPS, which disrupted the endothelial layer integrity, increased the permeability to AMB

    The ubiquitous nature of Listeria monocytogenesclones : a large-scale Multilocus Sequence Typing study

    No full text
    Listeria monocytogenes is ubiquitously prevalent in natural environments and is transmitted via the food chain to animals and humans, in whom it can cause life-threatening diseases. We used Multilocus Sequence Typing (MLST) of ∼2000 isolates of L. monocytogenes to investigate whether specific associations existed between clonal complexes (CCs) and the environment versus diseased hosts. Most CCs (72%) were not specific for any single source, and many have been isolated from the environment, food products, animals as well as from humans. Our results confirm that the population structure of L. monocytogenes is largely clonal and consists of four lineages (I–IV), three of which contain multiple CCs. Most CCs have remained stable for decades, but one epidemic clone (CC101) was common in the mid-1950s and very rare until recently when it may have begun to re-emerge. The historical perspective used here indicates that the central sequence types of CCs were not ancestral founders but have rather simply increased in frequency over decades
    corecore