128 research outputs found
Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness
Polynomial approximations to boolean functions have led to many positive
results in computer science. In particular, polynomial approximations to the
sign function underly algorithms for agnostically learning halfspaces, as well
as pseudorandom generators for halfspaces. In this work, we investigate the
limits of these techniques by proving inapproximability results for the sign
function.
Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput.
2008) shows that halfspaces can be learned with respect to log-concave
distributions on in the challenging agnostic learning model. The
power of this algorithm relies on the fact that under log-concave
distributions, halfspaces can be approximated arbitrarily well by low-degree
polynomials. We ask whether this technique can be extended beyond log-concave
distributions, and establish a negative result. We show that polynomials of any
degree cannot approximate the sign function to within arbitrarily low error for
a large class of non-log-concave distributions on the real line, including
those with densities proportional to .
Secondly, we investigate the derandomization of Chernoff-type concentration
inequalities. Chernoff-type tail bounds on sums of independent random variables
have pervasive applications in theoretical computer science. Schmidt et al.
(SIAM J. Discrete Math. 1995) showed that these inequalities can be established
for sums of random variables with only -wise independence,
for a tail probability of . We show that their results are tight up to
constant factors.
These results rely on techniques from weighted approximation theory, which
studies how well functions on the real line can be approximated by polynomials
under various distributions. We believe that these techniques will have further
applications in other areas of computer science.Comment: 22 page
A Nearly Optimal Lower Bound on the Approximate Degree of AC
The approximate degree of a Boolean function is the least degree of a real polynomial that
approximates pointwise to error at most . We introduce a generic
method for increasing the approximate degree of a given function, while
preserving its computability by constant-depth circuits.
Specifically, we show how to transform any Boolean function with
approximate degree into a function on variables with approximate degree at least . In particular, if , then
is polynomially larger than . Moreover, if is computed by a
polynomial-size Boolean circuit of constant depth, then so is .
By recursively applying our transformation, for any constant we
exhibit an AC function of approximate degree . This
improves over the best previous lower bound of due to
Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of
that holds for any function. Our lower bounds also apply to
(quasipolynomial-size) DNFs of polylogarithmic width.
We describe several applications of these results. We give:
* For any constant , an lower bound on the
quantum communication complexity of a function in AC.
* A Boolean function with approximate degree at least ,
where is the certificate complexity of . This separation is optimal
up to the term in the exponent.
* Improved secret sharing schemes with reconstruction procedures in AC.Comment: 40 pages, 1 figur
- …