38 research outputs found

    Protective versus Pathogenic Type I Interferon Responses during Virus Infections

    No full text
    Following virus infections, type I interferons are synthesized to induce the expression of antiviral molecules and interfere with virus replication. The importance of early antiviral type I IFN response against virus invasion has been emphasized during COVID-19 as well as in studies on the microbiome. Further, type I IFNs can directly act on various immune cells to enhance protective host immune responses to viral infections. However, accumulating data indicate that IFN responses can be harmful to the host by instigating inflammatory responses or inducing T cell suppression during virus infections. Also, inhibition of lymphocyte and dendritic cell development can be caused by type I IFN, which is independent of the traditional signal transducer and activator of transcription 1 signaling. Additionally, IFNs were shown to impair airway epithelial cell proliferation, which may affect late-stage lung tissue recovery from the infection. As such, type I IFN–virus interaction research is diverse, including host antiviral innate immune mechanisms in cells, viral strategies of IFN evasion, protective immunity, excessive inflammation, immune suppression, and regulation of tissue repair. In this report, these IFN activities are summarized with an emphasis placed on the functions of type I IFNs recently observed during acute or chronic virus infections

    Sphingosine 1-Phosphate-Metabolizing Enzymes Control Influenza Virus Propagation and Viral Cytopathogenicity ▿

    No full text
    Sphingosine 1-phosphate (S1P)-metabolizing enzymes regulate the level of sphingolipids and have important biological functions. However, the effects of S1P-metabolizing enzymes on host defense against invading viruses remain unknown. In this study, we investigated the role of S1P-metabolizing enzymes in modulating cellular responses to influenza virus infection. Overexpression of S1P lyase (SPL), which induces the degradation of S1P, interfered with the amplification of infectious influenza virus. Accordingly, SPL-overexpressing cells were much more resistant than control cells to the cytopathic effects caused by influenza virus infection. SPL-mediated inhibition of virus-induced cell death was supported by impairment of the upregulation of the proapoptotic protein Bax, a critical factor for influenza virus cytopathogenicity. Importantly, influenza virus infection of SPL-overexpressing cells induced rapid activation of extracellular signal-regulated kinase (ERK) and STAT1 but not of p38 mitogen-activated protein kinase (MAPK), Akt, or c-Jun N-terminal kinase (JNK). Blockade of STAT1 expression or inhibition of Janus kinase (JAK) activity elevated the level of influenza virus replication in the cells, indicating that SPL protects cells from influenza virus via the activation of JAK/STAT signaling. In contrast to that of SPL, the overexpression of S1P-producing sphingosine kinase 1 heightened the cells' susceptibility to influenza virus infection, an effect that was reversed by the inhibition of its kinase activity, representing opposed enzymatic activity. These findings indicate that the modulation of S1P-metabolizing enzymes is crucial for controlling the host defense against infection with influenza virus. Thus, S1P-metabolizing enzymes are novel potential targets for the treatment of diseases caused by influenza virus infection

    Measles Virus Infects and Suppresses Proliferation of T Lymphocytes from Transgenic Mice Bearing Human Signaling Lymphocytic Activation Molecule

    No full text
    Humans are the only natural reservoir of measles virus (MV), one of the most contagious viruses known. MV infection and the profound immunosuppression it causes are currently responsible for nearly one million deaths annually. Human signaling lymphocytic activation molecule (hSLAM) was identified as a receptor for wild-type MV as well as for MV strains prepared as vaccines. To better evaluate the role of hSLAM in MV pathogenesis and MV-induced immunosuppression, we created transgenic (tg) mice that expressed the hSLAM molecule under the control of the lck proximal promoter. hSLAM was expressed on CD4(+) and CD8(+) T cells in the blood and spleen and also on CD4(+), CD8(+), CD4(+) CD8(+), and CD4(−) CD8(−) thymocytes. Wild-type MV, after limited passage on B95-8 marmoset B cells, and the Edmonston laboratory strain of MV infected hSLAM-expressing cells. There was a direct correlation between the amount of hSLAM expressed on the cells' surface and the degree of viral infection. Additionally, MV infection induced downregulation of receptor hSLAM and inhibited cell division and proliferation of hSLAM(+) but not hSLAM(−) T cells. Therefore, these tg mice provide the opportunity for analyzing and comparing MV-T cell interactions and MV pathogenesis in cells expressing only the hSLAM MV receptor with those of tg mice whose T cells selectively express another MV receptor, CD46
    corecore