22 research outputs found

    Palladium-based ferroelectrics and multiferroics : theory and experiment

    Get PDF
    Palladium normally does not easily substitute for Ti or Zr in perovskite oxides. Moreover, Pd is not normally magnetic (but becomes ferromagnetic under applied uniaxial stress or electric fields). Despite these two great obstacles, we have succeeded in fabricating lead zirconate titanate with 30% Pd substitution. For 20:80 Zr:Ti the ceramics are generally single-phase perovskite (>99%), but sometimes exhibit 1% PbPdO2, which is magnetic below T=90K. The resulting material is multiferroic (ferroelectric-ferromagnet) at room temperature. The processing is slightly unusual (>8 hrs in high-energy ball-milling in Zr balls), and the density functional theory provided shows that it occurs because of Pd+4 in the oversized Pb+2 site; if all Pd+4 were to go into the Ti+4 perovskite B-site, no magnetism would result.PostprintPeer reviewe

    Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected zirconium MOF with the the-i topology, and its reversible lattice shift

    Get PDF
    The authors acknowledge the support of the EPSRC/St Andrews Criticat CDT (RRRP, PAW) and the European Community Seventh Framework Program (FP7/2007-2013) number 608490 (project M4CO2) (KKC, MYM, KIH, PAW). SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The research data (and/or materials) supporting this publication can be accessed at DOI: http://dx.doi.org/10.17630/6ffeed8a-e75f-4648-968f-3ed32a94e9a0.A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4',4"-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im-3m symmetry compared with the Pm-3m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr6 nodes leaving coordinatively unsaturated Zr4+ sites, as shown by IR spectroscopy using CO and CD3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm3 g−1 while CO2 adsorption at 196 K reaches 300 cm3 STP g−1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption.PostprintPeer reviewe

    Mechanochemical Synthesis of Mixed Metal, Mixed Linker GlassForming Metal–Organic Frameworks

    No full text
    Current methodologies to produce glass forming metal–organic frameworks (MOFs) rely on non-scalable solvothermal syntheses which have high energy requirements, relatively low yields and large tetratogenic solvent usage. Here we use a mechanochemical method to produce glass-forming MOFs, ZIF-62 and ZIF-UC-5, in 30 minutes at room temperature, using microlitre quantities of solvent and stoichiometric amounts of organic linkers. This method facilitates the accurate synthesis of ZIF-62 structures containing both Co and Zn, allowing the effect of metal-ion dopant upon melting temperature to be studied for the first time. Further to this, we present variable organic linker ratio series of IF-62 and of ZIF-UC-5. The specific composition of the materials in the series is made possible by the mechanochemical method. We also present a greener solvothermal method to form ZIF-62, which is capable of producing crystalline materials of suffcient quality for single crystal diffraction experiments.<br /

    Multivariate Analysis of Disorder in Metal–Organic Frameworks

    No full text
    The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry

    Multivariate Analysis of Disorder in Metal–Organic Frameworks

    No full text
    The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal–organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry.JM11106 EPSRC iCASE Fundin
    corecore