32 research outputs found

    Isolation and Phylogenetic Grouping of Equine Encephalosis Virus in Israel

    Get PDF
    During 2008–2009 in Israel, equine encephalosis virus (EEV) caused febrile outbreaks in horses. Phylogenetic analysis of segment 10 of the virus strains showed that they form a new cluster; analysis of segment 2 showed ≈92% sequence identity to EEV-3, the reference isolate. Thus, the source of this emerging EEV remains uncertain

    Detection of Epizootic Hemorrhagic Disease Virus Serotype 1, Israel

    No full text
    During September 2016–February 2017, we detected epizootic hemorrhagic disease virus (EHDV) in ruminants in Israel. BLAST and phylogenetic analyses of segment 2 in 6 EHDVs isolated from field samples indicated a close relationship to the EHDV serotype 1 strain in Nigeria. Affected cattle had mostly mild or asymptomatic disease

    Persistence of Lineage IV Peste-des-petits ruminants virus within Israel since 1993: An evolutionary perspective.

    No full text
    Peste-des-petits ruminants (PPR) is one of the most important infectious diseases of domesticated small ruminants. From the initial identification in 1942 in West Africa, PPR virus (PPRV) has spread throughout much of the developing world. PPRV is now considered endemic throughout Africa, with the notable exception of South Africa, the Middle-East and Israel, as well as South-, East-, and Central Asia. Despite this widespread dispersal, the evolution and transmission of PPRV in endemic populations is not well understood. This understanding will be critical in the planning of rational measures to eradicate PPRV by the planned time as defined by the FAO and OIE. To further advance the understanding of the evolution of PPRV the full genome sequence of 18 viruses isolated from Israel from consecutive years between 1997-2014 were generated. This data set is unique and crucial for the understanding of the evolution of PPRV, as it represents the first set of full-length sequence data available from consecutive years from a single geographic location. Analysis of these full genome sequences shows 96.2-99.9% nucleotide conservation across the Israel isolates and further demonstrates the strong purifying selection pressures on PPRV within Israel and globally. Four amino acid substitutions indicative of putative positive selection were additionally identified within the Israel isolates. The mean substitution rate per site per year was estimated to be 9.22 x 10-4 (95% HPD 6.206 x 10-4-1.26 x 10-3). Using Bayesian and phylogenetic analyses we further demonstrate that the PPRV isolates from Israel belongs to linage IV and form a single strong regional cluster within all other lineage IV viruses circulating worldwide implying a single incursion into Israel

    Nucleotide and amino acid percentage differences between PPRV Lineages.

    No full text
    <p>Nucleotide and amino acid percentage differences between PPRV Lineages.</p

    Location of PPR outbreaks in Israel (1993–2014).

    No full text
    <p>Sampling locations are plotted in red, GPS co-ordinates derived from Google maps API [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177028#pone.0177028.ref049" target="_blank">49</a>]. Comparisons of the full length genome, and coding regions from the 18 Israel samples sequenced in this study. Indicated that the Israel isolates were more closely related than other groups (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177028#pone.0177028.t002" target="_blank">Table 2</a>). Overall the Israel sequences were found to be 96.2 to 99.9% identical at the nucleotide level. As has been previously reported the P gene was the most variable [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177028#pone.0177028.ref050" target="_blank">50</a>] and the matrix (M) gene the most conserved (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177028#pone.0177028.t002" target="_blank">Table 2</a>).</p

    Maximum clade credibility (MCC) tree from Bayesian analysis of full-length PPRV genomes.

    No full text
    <p>The posterior probabilities are indicated by the size of the node, and TMRCA and 95% HPD of the branches are depicted. Accession number, country of origin, and sampling year of each isolate is shown. All sequences generated in this study are highlighted in red.</p

    Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015–2019

    No full text
    Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel

    Genomic Analysis Illustrated a Single Introduction and Evolution of Israeli Bluetongue Serotype 8 Virus Population 2008–2019

    No full text
    Outbreaks of the European Bluetongue virus (BTV) serotype 8 (BTV-8), which are characterized by activity cycles separated by years of inactivity, may be influenced by genetic changes of the virus or by herd immunity. BTV activity in Israel is characterized by similar dynamics, but differs from European countries in its vector population, environmental conditions, and lack of cattle vaccination against this serotype. Comparison of these two geographical systems and characterization of their epidemiological connection is therefore of high interest in-order to better understand the factors influencing BTV-8 evolution. BTV-8, closely related to the European strain, was introduced to Israel in 2008. It was at the center of BT outbreaks in 2010 and 2015–2016 and thereafter was lastly isolated in Israel in 2019. We performed genetic analyses of twelve BTV-8 Israeli strains isolated between 2008 and 2019 and compared them with published sequences of BTV-8 isolated in other countries. The analysis revealed a single introduction of BTV-8 into Israel and thereafter extensive occurrence of genomic drifts and multiple reassortments with local BTV strains. Comparison of the Israeli and Cypriot BTV-8 from 2015 to 2016 suggests transmission of the virus between the two countries and a separate and parallel development from European or other Israeli BTV-8 strains. The parallel development of other BTV-8 strains was demonstrated by the identification of the Israeli BTV-8 ISR-1194/1/19 strain, which exhibited common origin with reassorted Israeli BTV-8 strains from 2010 and additional reassortment of seven segments. In order to reveal the source of BTV-8 introduction into Israel we performed BEAST analysis which showed that a probable common ancestor for both European and Israeli BTV-8 presumably existed in 2003–2004. In 2019, a possible new introduction occurred in Israel, where a novel BTV-8 strain was detected, sharing ~95% identity by segments 2 and 6 with Nigerian BTV-8NIG1982/07 and European–Middle Eastern strains. The results of the study indicate that Israel and neighboring countries consist a separate environmental and evolutionary system, distinct from European ones
    corecore