30 research outputs found

    Preliminary molecular genetic analysis of the Receptor Interacting Protein 140 (RIP140) in women affected by endometriosis

    Get PDF
    BACKGROUND: Endometriosis is a complex disease affecting 10–15% of women at reproductive age. Very few genes are known to be altered in this pathology. RIP140 protein is an important cofactor of oestrogen receptor and many other nuclear receptors. Targeting disruption experiments of nrip1 gene in mice have demonstrated that nuclear receptor interacting protein 1 gene (nrip1), the gene encoding for rip140 protein, is essential for female fertility. Specifically, mice null for nrip1 gene are viable, but females are infertile because of complete failure of mature follicles to release oocytes at ovulation stage. The ovarian phenotype observed in mice devoid of rip140 closely resembles the luteinized unruptured follicle (LUF) syndrome that is observed in a high proportion of women affected of endometriosis or idiopathic infertility. Here we present a preliminary work that analyses the role of NRIP1 gene in humans. METHODS: We have sequenced the complete coding region of NRIP1 gene in 20 unrelated patients affected by endometriosis. We have performed genetic association studies by using the DNA variants identified during the sequencing process. RESULTS: We identified six DNA variants within the coding sequence of NRIP1 gene, and five of them generated amino acid changes in the protein. We observed that three of twenty sequenced patients have specific combinations of amino-acid variants within the RIP140 protein that are poorly represented in the control population (p = 0.006). Moreover, we found that Arg448Gly, a common polymorphism located within NRIP1 gene, is associated with endometriosis in a case-control study (59 cases and 141 controls, p(allele positivity test )= 0.027). CONCLUSION: Our results suggest that NRIP1 gene variants, separately or in combinations, might act as predisposing factors for human endometriosis

    LRIG2 mutations cause urofacial syndrome.

    No full text
    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract
    corecore