4 research outputs found

    Contrasting nitrogen fluxes in African tropical forests of the Congo Basin

    Get PDF
    The observation of high losses of bioavailable nitrogen (N) and N richness in tropical forests is paradoxical with an apparent lack of N input. Hence, the current concept asserts that biological nitrogen fixation (BNF) must be a major N input for tropical forests. However, well-characterized N cycles are rare and geographically biased; organic N compounds are often neglected and soil gross N cycling is not well quantified. We conducted comprehensive N input and output measurements in four tropical forest types of the Congo Basin with contrasting biotic (mycorrhizal association) and abiotic (lowland-highland) environments. In 12 standardized setups, we monitored N deposition, throughfall, litterfall, leaching, and export during one hydrological year and completed this empirical N budget with nitrous oxide (N2O) flux measurement campaigns in both wet and dry season and in situ gross soil N transformations using N-15-tracing and numerical modeling. We found that all forests showed a very tight soil N cycle, with gross mineralization to immobilization ratios (M/I) close to 1 and relatively low gross nitrification to mineralization ratios (N/M). This was in line with the observation of dissolved organic nitrogen (DON) dominating N losses for the most abundant, arbuscular mycorrhizal associated, lowland forest type, but in contrast with high losses of dissolved inorganic nitrogen (DIN) in all other forest types. Altogether, our observations show that different forest types in central Africa exhibit N fluxes of contrasting magnitudes and N-species composition. In contrast to many Neotropical forests, our estimated N budgets of central African forests are imbalanced by a higher N input than output, with organic N contributing significantly to the input-output balance. This suggests that important other losses that are unaccounted for (e.g., NOx and N-2 as well as particulate N) might play a major role in the N cycle of mature African tropical forests

    CongoFlux : the first eddy covariance flux tower in the Congo Basin

    No full text
    The Congo basin is home to the second-largest tropical forest in the world. Therefore, it plays a crucial role in the regional water cycle, the global carbon cycle and the continental greenhouse gas balance. Yet very few field-based data on related processes exist. In the wake of global change, there is a need for a better understanding of the current and future response of the forest biome in this region. A new long-term effort has been set up to measure the exchange of greenhouse gasses between a humid lowland tropical forest in the Congo basin and the atmosphere via an eddy-covariance (EC) tower. Eddy-covariance research stations have been used for decades already in natural and man-made ecosystems around the globe, but the natural ecosystems of Central Africa remained a blind spot. The so-called “CongoFlux” research site has been installed right in the heart of the Congo Basin, at the Yangambi research center in DR Congo. This introductory paper presents an elaborated description of this new greenhouse gas research infrastructure; the first of its kind in the second-largest tropical forest on Earth
    corecore