4,898 research outputs found

    Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    Get PDF
    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis

    Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission

    Get PDF
    A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight

    Time Reversal and n-qubit Canonical Decompositions

    Full text link
    For n an even number of qubits and v a unitary evolution, a matrix decomposition v=k1 a k2 of the unitary group is explicitly computable and allows for study of the dynamics of the concurrence entanglement monotone. The side factors k1 and k2 of this Concurrence Canonical Decomposition (CCD) are concurrence symmetries, so the dynamics reduce to consideration of the a factor. In this work, we provide an explicit numerical algorithm computing v=k1 a k2 for n odd. Further, in the odd case we lift the monotone to a two-argument function, allowing for a theory of concurrence dynamics in odd qubits. The generalization may also be studied using the CCD, leading again to maximal concurrence capacity for most unitaries. The key technique is to consider the spin-flip as a time reversal symmetry operator in Wigner's axiomatization; the original CCD derivation may be restated entirely in terms of this time reversal. En route, we observe a Kramers' nondegeneracy: the existence of a nondegenerate eigenstate of any time reversal symmetric n-qubit Hamiltonian demands (i) n even and (ii) maximal concurrence of said eigenstate. We provide examples of how to apply this work to study the kinematics and dynamics of entanglement in spin chain Hamiltonians.Comment: 20 pages, 3 figures; v2 (17pp.): major revision, new abstract, introduction, expanded bibliograph

    Hierarchical galaxy formation and substructure in the Galaxy's stellar halo

    Get PDF
    We develop an explicit model for the formation of the stellar halo from tidally disrupted, accreted dwarf satellites in the cold dark matter (CDM) framework, focusing on predictions testable with the Sloan Digital Sky Survey (SDSS) and other wide-field surveys. Subhalo accretion and orbital evolution are calculated using a semi-analytic approach within the Press-Schechter formalism. Motivated by our previous work, we assume that low-mass subhalos (v < 30 km/s) can form significant populations of stars only if they accreted a substantial fraction of their mass before the epoch of reionization. With this assumption, the model reproduces the observed velocity function of galactic satellites in the Local Group, solving the ``dwarf satellite problem'' without modifying the popular LCDM cosmology. The disrupted satellites yield a stellar distribution with a total mass and radial density profile consistent with those observed for the Milky Way stellar halo. Most significantly, the model predicts the presence of many large-scale, coherent substructures in the outer halo. These substructures are remnants of individual, tidally disrupted dwarf satellite galaxies. Substructure is more pronounced at large galactocentric radii because of the smaller number density of tidal streams and the longer orbital times. This model provides a natural explanation for the coherent structures in the outer stellar halo found in the SDSS commissioning data, and it predicts that many more such structures should be found as the survey covers more of the sky. The detection (or non-detection) and characterization of such structures could eventually test variants of the CDM scenario, especially those that aim to solve the dwarf satellite problem by enhancing satellite disruption.Comment: 12 pages, 8 figures, Submitted to Ap

    Polyethylene Oxide Nanofiber Production by Electrospinning

    Get PDF
    Electrospinning is an inexpensive technique that is used to produce nanofibers for a variety of applications. In electrospinning, a polymer solution is dispensed from a hypodermic-like syringe where an intense electric field attracts the solution to a collector while drawing the polymer into a very thin fiber. The diameter of the fiber can be controlled by tuning the process parameters such as the applied electric field, solution flow rate, distance between syringe tip and collector, and the collector geometry. In this paper we describe results from electrospinning poly(ethylene oxide) (PEO), a likely candidate for applications involving scaffolding for tissue engineering. The PEO nanofibers were fabricated from different polymer solution concentrations ranging from 14% - 22% (by weight). Each sample was then imaged using a scanning electron microscope. The morphology of the fibers produced from varying solution concentrations is discussed

    Space Motions of the Dwarf Spheroidal Galaxies Draco and Sculptor based on HST Proper Motions with ~10-year Time Baseline

    Full text link
    We present new proper motion (PM) measurements of the dwarf spheroidal galaxies (dSphs) Draco and Sculptor using multi-epoch images obtained with the Hubble Space Telescope ACS/WFC. Our PM results have uncertainties far lower than previous measurements, even made with the same instrument. The PM results for Draco and Sculptor are (mu_W,mu_N)_Dra = (-0.0562+/-0.0099,-0.1765+/-0.0100) mas/yr and (mu_W,mu_N)_Scl = (-0.0296+/-0.0209,-0.1358 +/-0.0214) mas/yr. The implied Galactocentric velocity vectors for Draco and Sculptor have radial and tangential components: (V_rad,V_tan)_Dra = (-88.6,161.4) +/- (4.4,5.6) km/s; and (V_rad,V_tan)_Scl = (72.6,200.2) +/- (1.3,10.8) km/s. We study the detailed orbital history of both Draco and Sculptor via numerical orbit integrations. Orbital periods of Draco and Sculptor are found to be 1-2 and 2-5 Gyrs, respectively, accounting for uncertainties in the MW mass. We also study the influence of the Large Magellanic Cloud (LMC) on the orbits of Draco and Sculptor. Overall, the inclusion of the LMC increases the scatter in the orbital results. Based on our calculations, Draco shows a rather wide range of orbital parameters depending on the MW mass and inclusion/exclusion of the LMC, but Sculptor's orbit is very well constrained with its most recent pericentric approach to the MW being 0.3-0.4 Gyr ago. Our new PMs imply that the orbital trajectories of both Draco and Sculptor are confined within the Disk of Satellites (DoS), better so than implied by earlier PM measurements, and likely rule out the possibility that these two galaxies were accreted together as part of a tightly bound group.Comment: 17 pages, 8 figures, 6 tables. Accepted for publication in Ap

    Tracing Galaxy Formation with Stellar Halos I: Methods

    Full text link
    If the favored hierarchical cosmological model is correct, then the Milky Way system should have accreted ~100-200 luminous satellite galaxies in the past \~12 Gyr. We model this process using a hybrid semi-analytic plus N-body approach which distinguishes explicitly between the evolution of light and dark matter in accreted satellites. This distinction is essential to our ability to produce a realistic stellar halo, with mass and density profile much like that of our own Galaxy, and a surviving satellite population that matches the observed number counts and structural parameter distributions of the satellite galaxies of the Milky Way. Our model stellar halos have density profiles which typically drop off with radius faster than those of the dark matter. They are assembled from the inside out, with the majority of mass (~80%) coming from the \~15 most massive accretion events. The satellites that contribute to the stellar halo have median accretion times of ~9 Gyr in the past, while surviving satellite systems have median accretion times of ~5 Gyr in the past. This implies that stars associated with the inner halo should be quite different chemically from stars in surviving satellites and also from stars in the outer halo or those liberated in recent disruption events. We briefly discuss the expected spatial structure and phase space structure for halos formed in this manner. Searches for this type of structure offer a direct test of whether cosmology is indeed hierarchical on small scales.Comment: 22 pages, 16 figures, submitted to Ap
    corecore