532 research outputs found

    Anderson impurity in a correlated conduction band

    Full text link
    We investigate the physics of a magnetic impurity with spin 1/2 in a correlated metallic host. Describing the band by a Hubbard Hamiltonian, the problem is analyzed using dynamical mean-field-theory in combination with Wilson's nonperturbative numerical renormalization group. We present results for the single-particle density of states and the dynamical spin susceptibility at zero temperature. New spectral features (side peaks) are found which should be observable experimentally. In addition, we find a general enhancement of the Kondo scale due to correlations. Nevertheless, in the metallic phase, the Kondo scale always vanishes exponentially in the limit of small hybridization.Comment: Final version, 4 pages RevTeX, 8 eps figures include

    The suppression of the Mid-Atlantic Copperhead Press

    Get PDF

    Freely and fearlessly : The 1863 New York editors\u27 resolutions

    Get PDF
    The eighth of June in 1863 was a cool late spring day in New York. In the Astor House Hotel, at one o\u27clock in the afternoon, sixteen journalists representing approximately two million readers assembled for what one New York paper called one of the most remarkable and important meetings which has occurred since the war started. New York journalists had met in 1848 to respond to their depiction in a play titled New York in Slices. Reporters had gathered at the Capitol in Washington, DC, at the start of the war to protest Winfield Scott\u27s decision to limit newspaper transmissions on the telegraph lines without his approval. The editors at the Astor House were standing up for their profession. They drew up nonpartisan resolutions that declared freedom of the press to be a bedrock principle of democratic society, even in wartime—even in time of civil war

    Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies

    Full text link
    Combining algebro-geometric methods and factorization techniques for finite difference expressions we provide a complete and self-contained treatment of all real-valued quasi-periodic finite-gap solutions of both the Toda and Kac-van Moerbeke hierarchies. In order to obtain our principal new result, the algebro-geometric finite-gap solutions of the Kac-van Moerbeke hierarchy, we employ particular commutation methods in connection with Miura-type transformations which enable us to transfer whole classes of solutions (such as finite-gap solutions) from the Toda hierarchy to its modified counterpart, the Kac-van Moerbeke hierarchy, and vice versa.Comment: LaTeX, to appear in Memoirs of the Amer. Math. So

    Numerical renormalization group study of the symmetric Anderson-Holstein model: phonon and electron spectral functions

    Full text link
    We study the symmetric Anderson-Holstein (AH) model at zero temperature with Wilson's numerical renormalization group (NRG) technique to study the interplay between the electron-electron and electron-phonon interactions. An improved method for calculating the phonon propagator using the NRG technique is presented, which turns out to be more accurate and reliable than the previous works in that it calculates the phonon renormalization explicitly and satisfies the boson sum rule better. The method is applied to calculate the renormalized phonon propagators along with the electron propagators as the onsite Coulomb repulsion UU and electron-phonon coupling constant gg are varied. As gg is increased, the phonon mode is successively renormalized, and for g≳gcog \gtrsim g_{co} crosses over to the regime where the mode splits into two components, one of which approaches back to the bare frequency and the other develops into a soft mode. The initial renormalization of the phonon mode, as gg is increased from 0, depends on UU and the hybridization Δ\Delta; it gets softened (hardened) for U≳(≲)Us(Δ)U \gtrsim (\lesssim) U_s (\Delta). Correlated with the emergence of the soft mode is the central peak of the electron spectral function severely suppressed. These NRG calculations will be compared with the standard Green's function results for the weak coupling regime to understand the phonon renormalization and soft mode.Comment: 18 pages, 4 figures. Submitted to Phys. Rev.

    Hydrogen contamination in Ge-doped SiO[sub 2] thin films prepared by helicon activated reactive evaporation

    Get PDF
    Germanium-doped silicon oxidethin films were deposited at low temperature by using an improved helicon plasma assisted reactive evaporation technique. The origins of hydrogen contamination in the film were investigated, and were found to be H incorporation during deposition and postdeposition water absorption. The H incorporation during deposition was avoided by using an effective method to eliminate the residual hydrogen present in the depositionsystem. The microstructure, chemical bonds, chemical etch rate, and optical index of the films were studied as a function of the deposition conditions. Granular microstructures were observed in low-density films, and were found to be the cause of postdeposition water absorption. The granular microstructure was eliminated and the film was densified by increasing the helicon plasma power and substrate bias during deposition. A high-density film was shown to have no postdeposition water absorption and no OH detected by using a Fourier-transform infrared spectrometer

    Quantum Monte Carlo calculation of the finite temperature Mott-Hubbard transition

    Full text link
    We present clear numerical evidence for the coexistence of metallic and insulating dynamical mean field theory(DMFT) solutions in a half-filled single-band Hubbard model with bare semicircular density of states at finite temperatures. Quantum Monte Carlo(QMC) method is used to solve the DMFT equations. We discuss important technical aspects of the DMFT-QMC which need to be taken into account in order to obtain the reliable results near the coexistence region. Among them are the critical slowing down of the iterative solutions near phase boundaries, the convergence criteria for the DMFT iterations, the interpolation of the discretized Green's function and the reduction of QMC statistical and systematic errors. Comparison of our results with those of other numerical methods is presented in a phase diagram.Comment: 4 pages, 5 figure

    Nonresonant inelastic light scattering in the Hubbard model

    Full text link
    Inelastic light scattering from electrons is a symmetry-selective probe of the charge dynamics within correlated materials. Many measurements have been made on correlated insulators, and recent exact solutions in large dimensions explain a number of anomalous features found in experiments. Here we focus on the correlated metal, as described by the Hubbard model away from half filling. We can determine the B1g Raman response and the inelastic X-ray scattering along the Brillouin zone diagonal exactly in the large dimensional limit. We find a number of interesting features in the light scattering response which should be able to be seen in correlated metals such as the heavy fermions.Comment: 9 pages, 7 figures, typeset with ReVTe

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    Antiferromagnetic Order of Strongly Interacting Fermions in a Trap: Real-Space Dynamical Mean-Field Analysis

    Get PDF
    We apply Dynamical Mean-Field Theory to strongly interacting fermions in an inhomogeneous environment. With the help of this Real-Space Dynamical Mean-Field Theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin 1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.Comment: 4 pages 5 figures, published versio
    • …
    corecore