5 research outputs found

    Proteomic Study of the Outer Layer of Biogenic Selenium Nanoparticles

    No full text
    This study focuses on the proteomic characterization of BioSeNPs external layer. For biogenic production of SeNPs, we used Bacillus mycoides SeITE01, an environmental strain isolated from the selenium-hyperaccumulator legume Astragalus bisulcatus rizosphere, capable of tolerating up to 25mM selenite

    Hematopoietic Stem Cell Transplantation for the Treatment of Autoimmune Neurological Diseases: An Update

    Get PDF
    Over the last two decades, haematopoietic stem cell transplantation (HSCT) has been explored as a potential therapeutic strategy for autoimmune diseases refractory to conventional treatments, including neurological disorders. Although both autologous (AHSCT) and allogeneic HSCT (allo-HSCT) were investigated, AHSCT was preferentially developed due to a more favourable safety profile compared to allo-HSCT. Multiple sclerosis (MS) represents the most frequent neurological indication for AHSCT, but increasing evidence on the potential effectiveness of transplant in other autoimmune neurological diseases is emerging, although with a risk-benefit ratio overall more uncertain than in MS. In the present work, the rationale for the use of HSCT in neurological diseases and the experimental models that prompted its clinical application will be briefly covered. Case series and prospective studies exploring the use of HSCT in autoimmune diseases other than MS will be discussed, covering both frequent and rare neurological disorders such as myasthenia gravis, myopathies, and stiff-person syndrome. Finally, an updated summary of ongoing and future studies focusing on this issue will be provided

    Hematopoietic Stem Cell Transplantation for the Treatment of Autoimmune Neurological Diseases: An Update

    No full text
    Over the last two decades, haematopoietic stem cell transplantation (HSCT) has been explored as a potential therapeutic strategy for autoimmune diseases refractory to conventional treatments, including neurological disorders. Although both autologous (AHSCT) and allogeneic HSCT (allo-HSCT) were investigated, AHSCT was preferentially developed due to a more favourable safety profile compared to allo-HSCT. Multiple sclerosis (MS) represents the most frequent neurological indication for AHSCT, but increasing evidence on the potential effectiveness of transplant in other autoimmune neurological diseases is emerging, although with a risk-benefit ratio overall more uncertain than in MS. In the present work, the rationale for the use of HSCT in neurological diseases and the experimental models that prompted its clinical application will be briefly covered. Case series and prospective studies exploring the use of HSCT in autoimmune diseases other than MS will be discussed, covering both frequent and rare neurological disorders such as myasthenia gravis, myopathies, and stiff-person syndrome. Finally, an updated summary of ongoing and future studies focusing on this issue will be provided
    corecore