5 research outputs found

    Design and implementation of fuzzy-based PID controller

    Get PDF
    controller is widely used in many industrial applications due to its simplicity in StmctllIe and ease of design. However, it is difficult to achieve .the desired control performance in the presence of unknown nonlinearities, time delays, disturbances as well as changes in system parameters. Consequently several PID models have been suggested so at to alleviate these effects on the performance of the PID controllers. One such method is based on fuzzy logic technique which is considered much more appropri.ate when precise mathematical formulation is infeasible or difficult to achieve. Furthermore, some applications such as semiconductor packaging, computer disk drives, and ultra-precision machining require a fast and high precision processing. Consequently, there is the need to consider digital signal processor (DSI?)- based fuzzy PID for use in such applications. Design and implementation of such technique is proposed in this paper. Results of simulation studies haw demonstrated the feasibility of this controller since: it produces fast response with smooth motion control

    Design and development of DSP-based hybrid controller for servo driver applications

    Get PDF
    A hybrid system involving the conventional proportional-integral-derivative (PID) controller and fuzzy-logic system for servo drivers needed in many motion control applications is examined in this paper. The importance of this approach is the tuning of PID controller using fuzzy logic system, which by so doing enhances the performance of conventional PID controller in terms of settling time, percentage overshoot and steady-state-error. Thus, this proposed system is meant to compensate for the poor performance of the PID controller as a result of various factors such as unknown nonlinearities, time delays, disturbances as well as changes in system parameters. The second part of this work is the implementation of the hybrid controller using digital signal processor (DSP) as this offers high speed, number crunching capability and the ability to produce a good accurate tracking with minimum time delay for many industrial applications such as power inverters, motion controllers, semiconductor packaging, computer disk drives, packaging assembly, high speed, high precise motion of material transfer and automotive control applications where some of these applications may require a fast and high precision processing. Both simulation results and hardware implementation of the proposed controller have shown the feasibility of this approach as it produces fast response and smooth motion control

    Design and development of DSP-based hybrid controller for servo driver applications

    Get PDF
    A hybrid system involving the conventional proportional-integral-derivative (PID) controller and fuzzy-logic system for servo drivers needed in many motion control applications is examined in this paper. The importance of this approach is the tuning of PID eontroller using fuzzy logic system, which by so doing enhances the performance of conventional PID controller in terms of settling time, percentage overshoot and steady-state-error. Thus, this proposed system is meant to compensate for the poor performance of the PID controller as a result of various factors such as unknown nonlinearities, time delays, disturbances as well as changes in system parameters. The second part of this work is the implementation of the hybrid controller using digital signal processor (DSP) as this offers high speed, number crunching capability and the ability to produce a good accurate tracking with minimum time delay for many industrial applications such as power inverters, motion controllers, semiconductor packaging, computer disk drives, packaging assembly, high speed, high precise motion of material transfer and automotive control applications where some of these applications may require a fast and high precision processing. Both simulation results and hardware implementation of the proposed controller have shown the feasibility of this approach as it produces fast response and smooth motion control
    corecore