37 research outputs found

    Fast polarization mechanisms in the uniaxial tungsten-bronze relaxor strontium barium niobate SBN-81

    Get PDF
    The high-frequency dielectric response of the uniaxial strontium barium niobate crystals with 81% of Sr has been studied from 1 kHz to 30 THz along the polar c axis by means of several techniques (far infrared, time domain terahertz, high-frequency and low-frequency dielectric spectroscopies) in a wide temperature interval 20–600 K. Relaxor properties were observed in the complex dielectric response and four main excitations were ascertained below the phonon frequencies. These fast polarization mechanisms take place at THz, GHz and MHz ranges and show different temperature evolution. The central mode excitation in the THz range, related to anharmonic dynamics of cations, slightly softens from high temperatures and then hardens below T ~ 400 K. Below the phase transition (at T ~ 330 K) an additional microwave excitation appears near 10 GHz related to micro domain wall oscillations. The strongest relaxation appears in the GHz range and slows down on cooling according to the Arrhenius law. Finally, another relaxation, present in the MHz range at high temperatures, also slows down on cooling at least to the kHz range. These two relaxations are due to polar fluctuations and nanodomains dynamics. Altogether, the four excitations explain the dielectric permittivity maximum in the kHz range

    Searching for the Slater Transition in the Pyrochlore Cd2_{2}Os2_{2}O7_{7} with Infrared Spectroscopy

    Full text link
    Infrared reflectance measurements were made on the single crystal pyrochlore Cd2_{2}Os2_{2}O7_{7} in order to examine the transformations of the electronic structure and crystal lattice across the boundary of the metal insulator transition at TMIT=226KT_{MIT}=226K. All predicted IR active phonons are observed in the conductivity over all temperatures and the oscillator strength is found to be temperature independent. These results indicate that charge ordering plays only a minor role in the MIT and that the transition is strictly electronic in nature. The conductivity shows the clear opening of a gap with 2Δ=5.2kBTMIT2\Delta=5.2k_{B}T_{MIT}. The gap opens continuously, with a temperature dependence similar to that of BCS superconductors, and the gap edge having a distinct σ(ω)∼ω1/2\sigma(\omega)\thicksim\omega^{1/2} dependence. All of these observables support the suggestion of a Slater transition in Cd2_{2}% Os2_{2}O7_{7}.Comment: 4 pages, 4 figure

    Ferroelectric and Incipient Ferroelectric Properties of a Novel Sr_(9-x)PbxCe2Ti2O36 (x=0-9) Ceramic System

    Full text link
    Sr_(9-x)PbxCe2Ti12O36 system is derived from the perovskite SrTiO3 and its chemical formula can be written as (Sr_(1-y)Pby)0.75Ce0.167TiO3. We investigated dielectric response of Sr_(9-x)PbxCe2Ti12O36 ceramics (x = 0-9) between 100 Hz and 100 THz at temperatures from 10 to 700 K using low- and high-frequency dielectric, microwave (MW), THz and infrared spectroscopy. We revealed that Sr9Ce2Ti12O36 is an incipient ferroelectric with the R-3c trigonal structure whose relative permittivity e' increases from 167 at 300 K and saturates near 240 below 30 K. The subsequent substitution of Sr by Pb enhances e' to several thousands and induces a ferroelectric phase transition to monoclinic Cc phase for x>=3. Its critical temperature Tc linearly depends on the Pb concentration and reaches 550 K for x=9. The phase transition is of displacive type. The soft mode frequency follows the Barrett formula in samples with x=3. The MW dispersion is lacking and quality factor Q is high in samples with low Pb concentration, although the permittivity is very high in some cases. However, due to the lattice softening, the temperature coefficient of the permittivity is rather high. The best MW quality factor was observed for x=1: Q*f=5800 GHz and e'=250. Concluding, the dielectric properties of Sr_(9- x)PbxCe2Ti12O36 are similar to those of Ba_(1-x)SrxTiO3 so that this system can be presumably used as an alternative for MW devices or capacitors.Comment: subm. to Chem. Mate

    Local structure of relaxor ferroelectric SrxBa1-xNb2O6 from a pair distribution function analysis

    Get PDF
    Pair distribution function analysis of neutron-scattering data and of ab initio molecular dynamics results have been employed to study short-range structural correlations and their temperature dependence in a heavily disordered dielectric material SrxBa1-xNb2O6 (x = 0.35, 0.5, and 0.61). Intrinsic disorder caused by a partial occupation of the cationic sites by differently sized Sr and Ba atoms and their vacancies introduces important local strains to the structure and directly influences the Nb-O-6 octahedra tilting. The resulting complex system of tilts is found to be both temperature and Sr-doping sensitive with the biggest tilt magnitudes reached at low temperatures and high strontium contents, where ferroelectric relaxor behavior appears. We find evidence for two Nb-O-6 subsystems with different variations of niobium-oxygen bond lengths, distinct dynamics, and disparate levels of deviation from macroscopic polarization direction. These findings establish a detailed picture of the local structure of SrxBa1-xNb2O6 and provide a deeper insight into the origins of the materials dielectric properties.This work was supported by the Czech Science Foundation (Project No. 16-09142S). The computational part of this research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

    Broad-band dielectric spectroscopy of Ba

    No full text
    Barium sodium niobate (BNN) single crystals are studied by IR spectroscopy, time-domain THz transmission spectroscopy, HF coaxial wave-guide technique and LF dielectric spectroscopy to cover the frequency range 102–1014 Hz in a wide temperature interval. The dielectric response parallel and perpendicular to the polar c-axis is discussed. The ferroelectric transition at Tc=830T_{\rm c}=830 K is driven by a relaxational soft mode coupled with another central-mode type relaxation which both gradually disappear on cooling in the ferroelectric phase. Below Ti the parameters of the expected IR active amplitudon were estimated. The low-temperature permittivity increase on cooling for the E⃗⊥c⃗{\vec E}\bot {\vec c} field direction has been explained by an incipient proper ferroelectric-ferroelastic transition driven by an IR and Raman active B2-symmetry soft mode

    Phase transitions sequence in pyrochlore Cd

    No full text
    The infrared reflectivity of Cd2Nb2O7 single crystal was studied in the temperature interval of 10-540 K, together with complementary dielectric measurements. A ferroelectric soft mode was revealed above the ferroelectric phase transition at Tc = 196 K coupled with a central-mode type dispersion in the near-millimetre range. This proves the mixed displacive and order-disorder nature of the transition. Below Tc many new modes were detected due to lowering of the symmetry, especially below the previously suggested incommensurate transition at 85 K. Discussion of the possible phase transitions based on symmetry considerations is presented with the conclusion that the ferroelectric transition is proper with the F1uF_{1u} symmetry of the order parameter, whereas the intermediate ferroelastic transition is improper and triggered by the coupling with the ferroelectric order parameter

    Compositional behavior of Raman-active phonons in Pb(Zr,Ti)O3 ceramics

    No full text
    A systematic study of the Raman spectra of Pb(Zr1-xTix)O-3 (PZT) ceramics has been performed in a broad temperature interval (10-600 K) and a broad Ti/Zr concentration range around the morphotropic phase boundary (x = 0.25-0.70). The number of the spectral components was estimated by a standard fitting procedure with damped harmonic oscillators as well as by counting the number of peaks and shoulders with the help of a purposely designed mathematical analysis based on frequency derivatives of the Raman spectra. This last method proves to be very useful to study Raman spectra of disordered materials. For the case of PZT, the comparison with the Raman modes of PbTiO3 allows us to assign the phonon bands on both sides of the morphotropic phase boundary, and the crossover from the tetragonal to rhombohedral phase spectra is clearly visible. However, there are no indications of a systematic splitting of the E-symmetry modes into monoclinic A'-A '' doublets in the morphotropic samples. Detailed adjusting of the response function to the spectrum requires to assume additional Raman-active modes, but this holds for a much broader concentration range than that of the anticipated monoclinic phase. In particular, the lowest frequency transverse optic mode of E-symmetry (soft mode of the ferroelectric phase transition) is split into two components, a THz frequency anharmonic (central modelike) component and a resonant component (at omega similar to 80 cm(-1)), both related to the same normal coordinate. The additional Raman band appearing in this frequency range (omega similar to 65 cm(-1)) at low temperatures is rather associated with the antiphase tilt vibrations of the oxygen octahedra
    corecore