15 research outputs found

    Standardized Short-Term Acute Heat Stress Assays Resolve Historical Differences in Coral Thermotolerance Across Microhabitat Reef Sites

    Get PDF
    Coral bleaching is one of the main drivers of reef degradation. Most corals bleach and suffer mortality at just 1–2°C above their maximum monthly mean temperatures, but some species and genotypes resist or recover better than others. Here, we conducted a series of 18‐hr short‐term acute heat stress assays side‐by‐side with a 21‐day long‐term heat stress experiment to assess the ability of both approaches to resolve coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we assessed bleaching susceptibility of Stylophora pistillata colonies from the windward/exposed and leeward/protected sites of a nearshore coral reef in the central Red Sea, which had previously shown differential mortality during a natural bleaching event. Photosynthetic efficiency was most indicative of the expected higher thermal tolerance in corals from the protected reef site, denoted by an increased retention of dark‐adapted maximum quantum yields at higher temperatures. These differences were resolved using both experimental setups, as corroborated by a positive linear relationship, not observed for the other parameters. Notably, short‐term acute heat stress assays resolved per‐colony (genotype) differences that may have been masked by acclimation effects in the long‐term experiment. Using our newly developed portable experimental system termed the Coral Bleaching Automated Stress System (CBASS), we thus highlight the potential of mobile, standardized short‐term acute heat stress assays to resolve fine‐scale differences in coral thermotolerance. Accordingly, such a system may be suitable for large‐scale determination and complement existing approaches to identify resilient genotypes/reefs for downstream experimental examination and prioritization of reef sites for conservation/restoration. Development of such a framework is consistent with the recommendations of the National Academy of Sciences and the Reef Restoration and Adaptation Program committees for new intervention and restoration strategies

    Disparate Population and Holobiont Structure of Pocilloporid Corals Across the Red Sea Gradient Demonstrate Species-Specific Evolutionary Trajectories

    Get PDF
    Global habitat degradation heightens the need to better understand patterns of genetic connectivity and diversity of marine biota across geographical ranges to guide conservation efforts. Corals across the Red Sea are subject to pronounced environmental differences, but studies so far suggest that animal populations are largely connected, excepting evidence for a genetic break between the northern-central and southern regions. Here, we investigated population structure and holobiont assemblage of two common pocilloporid corals, Pocillopora verrucosa and Stylophora pistillata, across the Red Sea. We found little evidence for population differentiation in P. verrucosa, except for the southernmost site. Conversely, S. pistillata exhibited a complex population structure with evidence for within-reef and regional genetic differentiation, in line with differences in their reproductive mode (P. verrucosa is a broadcast spawner and S. pistillata is a brooder). Analysis for genomic loci under positive selection identified 85 sites (18 of which were in coding sequences) that distinguished the southern P. verrucosa population from the remainder of the Red Sea population. By comparison, we found 128 loci (24 of which were residing in coding sequences) in S. pistillata with evidence for local adaptation at various sites. Functional annotation of the underlying proteins revealed putative roles in the response to stress, lipid metabolism, transport, cytoskeletal rearrangement, and ciliary function (among others). Microbial assemblages of both coral species showed pervasive association with microalgal symbionts from the genus Symbiodinium (former clade A) and bacteria from the genus Endozoicomonas that exhibited significant differences according to host genotype and environment. The disparity of population genetic and holobiont assemblage patterns even between closely related species (family Pocilloporidae) highlights the need for multispecies investigations to better understand the role of the environment in shaping evolutionary trajectories. It further emphasizes the importance of networks of reef reserves to achieve conservation of genetic variants critical to the future survival of coral ecosystems

    Empirically Derived Thermal Thresholds of Four Coral Species Along the Red Sea Using a Portable and Standardized Experimental Approach

    Get PDF
    Global warming is causing an unprecedented loss of species and habitats worldwide. This is particularly apparent for tropical coral reefs, with an increasing number of reefs experiencing mass bleaching and mortality on an annual basis. As such, there is a growing need for a standardized experimental approach to rapidly assess the thermal limits of corals and predict the survival of coral species across reefs and regions. Using a portable experimental system, the Coral Bleaching Automated Stress System (CBASS), we conducted standardized 18 h acute thermal stress assays to quantitively determine the upper thermal limits of four coral species across the length of the Red Sea coastline, from the Gulf of Aqaba (GoA) to Djibouti (~ 2100 km). We measured dark-acclimated photosynthetic efficiency (Fv/Fm), algal symbiont density, chlorophyll a, and visual bleaching intensity following heat stress. Fv/Fm was the most precise response variable assessed, advancing the Fv/Fm effective dose 50 (ED50, i.e., the temperature at which 50% of the initial Fv/Fm is measured) as an empirically derived proxy for thermal tolerance. ED50 thermal thresholds from the central/southern Red Sea and Djibouti populations were consistently higher for Acropora hemprichii, Pocillopora verrucosa, and Stylophora pistillata (0.1–1.8 °C above GoA corals, respectively), in line with prevailing warmer maximum monthly means (MMMs), though were lower than GoA corals relative to site MMMs (1.5–3.0 °C). P. verrucosa had the lowest thresholds overall. Despite coming from the hottest site, thresholds were lowest for Porites lobata in the southern Red Sea, suggesting long-term physiological damage or ongoing recovery from a severe, prior bleaching event. Altogether, the CBASS resolved historical, taxonomic, and possibly recent environmental drivers of variation in coral thermal thresholds, highlighting the potential for a standardized, short-term thermal assay as a universal approach for assessing ecological and evolutionary variation in the upper thermal limits of corals

    Contrasting Heat Stress Response Patterns of Coral Holobionts Across the Red Sea Suggest Distinct Mechanisms of Thermal Tolerance

    Get PDF
    Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching \u3e5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz

    Annual Conference on Formative Research on EFL. Practices thar inspire change.

    Get PDF
    The conference papers of the Annual Conference on Formative Research on EFL. Practices thar inspire change collect pedagogical experiences, research reports, and reflections about social issues, language teaching, teaching training, interculturality under the panorama of the Covid-19 pandemic. Each paper invites the reader to implement changes in their teaching practice through disruptive pedagogies, reflect on the social and emotional consequences of the lockdown, new paths for teacher training and different approaches for teaching interculturality. We expect to inspire new ways to train pre-service teachers and teach languages in this changing times

    Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean

    No full text
    Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The genome of the cauliflower coral Pocillopora verrucosa

    No full text
    Climate change and ocean warming threaten the persistence of corals worldwide. Genomic resources are critical to study the evolutionary trajectory, adaptive potential, and genetic distinctiveness of coral species. Here we provide a reference genome of the cauliflower coral Pocillopora verrucosa, a broadly prevalent reef-building coral with important ecological roles in the maintenance of reefs across the Red Sea, the Indian Ocean, and the Pacific Ocean. The genome has an assembly size of 380,505,698 bp with a scaffold N50 of 333,696 bp and a contig N50 of 75,704 bp. The annotation of the assembled genome returned 27,439 gene models of which 89.88% have evidence of transcription from RNA-Seq data and 97.87% show homology to known genes. A high proportion of the genome (41.22%) is comprised of repetitive elements in comparison to other cnidarian genomes, in particular in relation to the small genome size of P. verrucosa.publishe

    Standardized short‐term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites

    Get PDF
    coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we as- sessed bleaching susceptibility of Stylophora pistillata colonies from the windward/ exposed and leeward/protected sites of a nearshore coral reef in the central Red Sea, which had previously shown differential mortality during a natural bleaching event. Photosynthetic efficiency was most indicative of the expected higher thermal tolerance in corals from the protected reef site, denoted by an increased retention of dark-adapted maximum quantum yields at higher temperatures. These differ- ences were resolved using both experimental setups, as corroborated by a positive linear relationship, not observed for the other parameters. Notably, short-term acute heat stress assays resolved per-colony (genotype) differences that may have been masked by acclimation effects in the long-term experiment. Using our newly devel- oped portable experimental system termed the Coral Bleaching Automated Stress System (CBASS), we thus highlight the potential of mobile, standardized short-term acute heat stress assays to resolve fine-scale differences in coral thermotolerance. Accordingly, such a system may be suitable for large-scale determination and com- plement existing approaches to identify resilient genotypes/reefs for downstream ex- perimental examination and prioritization of reef sites for conservation/restoration. Development of such a framework is consistent with the recommendations of the National Academy of Sciences and the Reef Restoration and Adaptation Program committees for new intervention and restoration strategies

    Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance

    No full text
    Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching >5°C above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during re-colonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus Central Red Sea (CRS) Stylophora pistillata corals using the Coral Bleaching Automated Stress System (CBASS) to run a series of standardized acute thermal stress assays. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7°C above MMM). However, absolute thermal thresholds of CRS corals were on average 3°C above those of GoA corals. To explore the mechanistic underpinnings, we determined gene expression response and microbiome dynamics of coral holobiont compartments. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals versus a remarkably muted response in corals from the CRS. This pattern was recapitulated in the algal symbionts that showed site-specific genetic differentiation. Concomitant to this, a subset of coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression, i.e. front-loading, in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed consistent assemblages, indicating distinct microbial response patterns. Our work demonstrates distinct patterns underlying thermal tolerance across spatial scales, even for the same species and ocean basin. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that affect the response of coral populations to ocean warming.publishe
    corecore