4 research outputs found
Testing one-body density functionals on a solvable model
There are several physically motivated density matrix functionals in the
literature, built from the knowledge of the natural orbitals and the occupation
numbers of the one-body reduced density matrix. With the help of the equivalent
phase-space formalism, we thoroughly test some of the most popular of those
functionals on a completely solvable model.Comment: Latex, 16 pages, 4 figure
Investigation of Changing Pore Topology and Porosity during Matrix Acidizing using Different Chelating Agents
Core flooding acidizing experiments on sandstone/carbonate formation are usually performed in the laboratory to observe different physical phenomena and to design acidizing stimulation jobs for the field. During the tests, some key parameters are analyzed such as pore volume required for breakthrough as well as pressure. Hydrochloric acid (HCl) is commonly used in the carbonate matrix acidizing while Mud acid (HF: HCl) is usually applied during the sandstone acidizing to remove damage around the well bore. However, many problems are associated with the application of these acids, such as fast reaction, corrosion and incompatibility of HCl with some minerals (illite). To overcome these problems, chelating agents (HEDTA, EDTA and GLDA) were used in this research. Colton tight sandstone and Guelph Dolomite core samples were used in this study. The experiments usually are defined in terms of porosity, permeability, dissolution and pore topology. Effluent samples were analyzed to determine dissolved iron, sodium, potassium, calcium and other positive ions using Inductively Coupled Plasma (ICP). Meanwhile Nuclear Magnetic Resonance (NMR) was employed to determine porosity and pore structure of the core sample. Core flood experiments on Berea sandstone cores and dolomite samples with dimensions of 1.5 in Ă 3 in were conducted at a flow rate of 1 cc/min under 150oF temperature. NMR and porosity analysis concluded that applied chemicals are effective in creating fresh pore spaces. ICP analysis concluded that HEDTA showed good ability to chelate calcium, sodium, magnesium, potassium and iron. It can be established from the analysis that HEDTA can increase more amount of permeability as compared to other chelates
An approximate exchange-correlation hole density as a functional of the natural orbitals
The Fermi and Coulomb holes that can be used to describe the physics of electron correlation are calculated and analysed for a number of typical cases, ranging from prototype dynamical correlation to purely nondynamical correlation. Their behaviour as a function of the position of the reference electron and of the nuclear positions is exhibited. The notion that the hole can be written as the square of a hole amplitude, which is exactly true for the exchange hole, is generalized to the total holes, including the correlation part. An Ansatz is made for an approximate yet accurate expression for the hole amplitude in terms of the natural orbitals, employing the local (at the reference position) values of the natural orbitals and the density. This expression for the hole amplitude leads to an approximate two-electron density matrix that: (a) obeys correct permutation symmetry in the electron coordinates; (b) integrates to the exact one-matrix; and (c) yields exact correlation energies in the limiting cases of predominant dynamical correlation (high Z two-electron ions) and pure nondynamical correlation (dissociated