3 research outputs found

    Eukaryotic Plankton Communities Across Reef Environments in Bocas del Toro Archipelago, Panamá

    Get PDF
    Variation in light and temperature can influence the genetic diversity and structure of marine plankton communities. While open-ocean plankton communities receive much scientific attention, little is known about how environmental variation affects plankton communities on tropical coral reefs. Here, we characterize eukaryotic plankton communities on coral reefs across the Bocas del Toro Archipelago, Panama´. Temperature loggers were deployed, and midday light levels were measured to quantify environmental differences across reefs at four inshore and four offshore sites (Inshore = Punta Donato, Smithsonian Tropical Research Institute (STRI) Point, Cristobal, Punta Laurel and Offshore = Drago Mar, Bastimentos North, Bastimentos South, and Cayo de Agua). Triplicate vertical plankton tows were collected midday, and high-throughput 18S ribosomal DNA metabarcoding was leveraged to investigate the relationship between eukaryotic plankton community structure and inshore/offshore reef environments. Plankton communities from STRI Point were additionally characterized in the morning (* 08:00), midday (* 12:00), and late-day (* 16:00) to quantify temporal variation within a single site. We found that inshore reefs experienced higher average seawater temperatures, while offshore sites offered higher light levels, presumably associated with reduced water turbidity on reefs further from shore. These significant environmental differences between inshore and offshore reefs corresponded with overall plankton community differences. We also found that temporal variation played a structuring role within these plankton communities, and conclude that time of community sampling is an important consideration for future studies. Follow-up studies focusing on more intensive sampling efforts across space and time, coupled with techniques that can detect more subtle genetic differences between and within communities will more fully capture plankton dynamics in this region and beyond

    Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation

    Get PDF
    Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation
    corecore