308 research outputs found

    Graph bisection algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1986.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Bibliography: leaves 64-66.by Thang Nguyen Bui.Ph.D

    Trade liberalization and marketization of agro-products

    Get PDF

    Optical engineering of iii-nitride nanowire light-emitting diodes and applications

    Get PDF
    Applications of III-nitride nanowires are intensively explored in different emerging technologies including light-emitting diodes (LEDs), laser diodes, photodiodes, biosensors, and solar cells. The synthesis of the III-nitride nanowires by molecular beam epitaxy (MBE) is investigated with significant achievements. III-nitride nanowires can be grown on dissimilar substrates i.e., silicon with nearly dislocation free due to the effective strain relaxation. III-nitride nanowires, therefore, are perfectly suited for high performance light emitters for cost-effective fabrication of the advanced photonic-electronic integrated platforms. This dissertation addresses the design, fabrication, and characterization of III-nitride nanowire full-color micro-LED (µLED) on silicon substrates for µLED display technologies, high-efficient ultraviolet (UV) LEDs, and spectral engineering for narrow band LEDs. In this dissertation, InGaN/AlGaN nanowire µLEDs were demonstrated with highly stable emission which can be varied from the blue to red spectrum. Additionally, by integrating full-color emissions in a single nanowire, phosphor-free white-color µLEDs are achieved with an unprecedentedly high color rendering index of ~ 94. Such high-performance µLEDs are perfectly suitable for the next generation high-resolution micro-display applications. Moreover, the first demonstration of two-step surface passivation using Potassium Hydroxide (KOH) and Ammonium Sulfide (NH4)2Sx is reported. The photoluminescence, electroluminescence, and optical power of the 335 nm AlGaN nanowire UV LEDs show improvements by 49%, 83%, and 65%, respectively. Such enhanced performance is attributed to the mitigation of the surface nonradiative recombination on the nanowire surfaces. A combination of KOH and (NH4)2Sx treatment shows a promising approach for high efficiency and high power AlGaN nanowire UV LEDs. The LEDs with narrow spectra are highly desirable light sources for precisely controlled applications such as phototherapy. In this regard, we have further demonstrated narrow spectral nanowire LEDs using on-chip integrated bandpass filters. To achieve narrow band spectra, the bandpass filters are designed and fabricated using all-dielectric and metal-dielectric multilayers for visible and UV regions, respectively. They are fabricated onto LED devices as a single photonic platform to achieve the narrow band LEDs for innovative applications like phototherapy for wound healing

    Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Full text link
    The Fermi transition (\Delta L=\Delta S=0 and \Delta T=1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p,n) or (3He,t) reaction, can be considered as "elastic" scattering of proton or 3He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p,n) or (3He,t) scattering cross-section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3He optical potential to the cross section of the charge-exchange (p,n) or (3He,t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p,n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence.Comment: Accepted for publication in European Physical Journal A - "Hadrons and Nuclei

    State Space Reduction on Wireless Sensor Network Verification Using Component-Based Petri Net Approach

    Get PDF
    With the recent advancement of Internet of Things, the applications of Wireless Sensor Networks (WSNs) are increasingly attracting attention from of both industry and research communities. However, since the deployment cost of a WSN is relatively large, one would want to make a logic model of a WSN and have the model verified beforehand to ensure that the WSN would work correctly and effectively once practically employed. Petri Net (PN) is very suitable to model a WSN, since PN strongly supports modeling concurrent and ad-hoc systems. However, verification of a PN-modeled system suffers from having to explore the huge state space of the system. In order to overcome it, in this paper we suggest a novel component-based approach to model and verify a PN-modeled WSN system. First of all, the original WSN system is divided into components, which can be further abstracted to reduce the model size. Moreover, when verifying the corresponding PN model produced from the abstracted WSN, we introduce a strategy of component-based firing, which can reduce the state space significantly. Compared to typical approach of PN-based verification, our method enjoys an impressive improvement of performance and resource consuming, as depicted in our experimental results
    corecore