813 research outputs found

    Phase diagram of microcavity exciton-polariton condensates

    Full text link
    In this work, we study the exciton-polariton condensate phase transition in a microcavity matter-light system in which electron-hole Coulomb interaction and matter-light coupling effects are treated on an equal footing. In the framework of the unrestricted Hartree-Fock approximation applying the two-dimensional exciton-polariton model, we derive the self-consistent equations determining simultaneously the excitonic and the photonic condenstate order parameters. In the thermal equilibrium limit, we find a condensed state of the exciton-polariton systems and phase diagrams are then constructed. At a given low temperature, the condensate by its nature shows a crossover from an excitonic to a polaritonic and finally photonic condensed state as the excitation density increases at large detuning. Without the detuning, the excitonic condensed state disappears whereas the polaritonic or photonic phases dominate. The crossover is also found by lowering the Coulomb interaction at a finite matter-light coupling. Lowering the Coulomb interaction or increasing the temperature, the excitonic Mott transition occurs, at which the exciton-polariton condensates dissociate to free electron-hole/photon. Depending on temperature and excitation density, the phase transition of the exciton-polariton condensates is also addressed in signatures of photoluminescence mapping to the photonic momentum distribution.Comment: 7 pages, 6 figure

    Exploring headache attributed to airplane travel

    Get PDF

    Quantification of Data Needs, Data Collection and

    Get PDF
    Further to the development of a model analysis fr

    Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts

    Get PDF
    We present a Bayesian nonparametric framework for multilevel clustering which utilizes group-level context information to simultaneously discover low-dimensional structures of the group contents and partitions groups into clusters. Using the Dirichlet process as the building block, our model constructs a product base-measure with a nested structure to accommodate content and context observations at multiple levels. The proposed model possesses properties that link the nested Dirichlet processes (nDP) and the Dirichlet process mixture models (DPM) in an interesting way: integrating out all contents results in the DPM over contexts, whereas integrating out group-specific contexts results in the nDP mixture over content variables. We provide a Polya-urn view of the model and an efficient collapsed Gibbs inference procedure. Extensive experiments on real-world datasets demonstrate the advantage of utilizing context information via our model in both text and image domains.Comment: Full version of ICML 201
    • …
    corecore