183 research outputs found

    SSH adequacy to preimplantation mammalian development: Scarce specific transcripts cloning despite irregular normalisation

    Get PDF
    BACKGROUND: SSH has emerged as a widely used technology to identify genes that are differentially regulated between two biological situations. Because it includes a normalisation step, it is used for preference to clone low abundance differentially expressed transcripts. It does not require previous sequence knowledge and may start from PCR amplified cDNAs. It is thus particularly well suited to biological situations where specific genes are expressed and tiny amounts of RNA are available. This is the case during early mammalian embryo development. In this field, few differentially expressed genes have been characterized from SSH libraries, but an overall assessment of the quality of SSH libraries is still required. Because we are interested in the more systematic establishment of SSH libraries from early embryos, we have developed a simple and reliable strategy based on reporter transcript follow-up to check SSH library quality and repeatability when starting with small amounts of RNA. RESULTS: Four independent subtracted libraries were constructed. They aimed to analyze key events in the preimplantation development of rabbit and bovine embryos. The performance of the SSH procedure was assessed through the large-scale screening of thousands of clones from each library for exogenous reporter transcripts mimicking either tester specific or tester/driver common transcripts. Our results show that abundant transcripts escape normalisation which is only efficient for rare and moderately abundant transcripts. Sequencing 1600 clones from one of the libraries confirmed and extended our results to endogenous transcripts and demonstrated that some very abundant transcripts common to tester and driver escaped subtraction. Nonetheless, the four libraries were greatly enriched in clones encoding for very rare (0.0005% of mRNAs) tester-specific transcripts. CONCLUSION: The close agreement between our hybridization and sequencing results shows that the addition and follow-up of exogenous reporter transcripts provides an easy and reliable means to check SSH performance. Despite some cases of irregular normalisation and subtraction failure, we have shown that SSH repeatedly enriches the libraries in very rare, tester-specific transcripts, and can thus be considered as a powerful tool to investigate situations where small amounts of biological material are available, such as during early mammalian development

    Reduced Retinal Function in the Absence of Nav1.6

    Get PDF
    Background: Mice with a function-blocking mutation in the Scn8a gene that encodes Nav1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the retinal function of these mice in light adapted conditions has not been studied. Methodology/Principal Findings: In the present report we reveal that during light adaptation these animals are shown to have electroretinograms with significant decreases in the amplitude of the a- and b-waves. The percent decrease in the a-and b-waves substantially exceeds the acute effect of VGSC block by tetrodotoxin in control littermates. Intravitreal injection of CoCl 2 or CNQX to isolate the a-wave contributions of the photoreceptors in littermates revealed that at high background luminance the cone-isolated component of the a-wave is of the same amplitude as the a-wave of mutants. Conclusions/Significance: Our results indicate that Scn8a mutant mice have reduced function in both rod and the cone retinal pathways. The extent of the reduction in the cone pathway, as quantified using the ERG b-wave, exceeds the reduction seen in control littermates after application of TTX, suggesting that a defect in cone photoreceptors contributes to the reduction. Unless the postreceptoral component of the a-wave is increased in Scn8a mutant mice, the reduction in the b-wave is larger than can be accounted for by reduced photoreceptor function alone. Our data suggests that th

    Evidence for Diffuse Central Retinal Edema In Vivo in Diabetic Male Sprague Dawley Rats

    Get PDF
    Background: Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema. Methodology/Principal Findings: In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control), whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, ‘water mobility’) were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology) were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes), and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls), MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats

    Ring-Like Distribution of Constitutive Heterochromatin in Bovine Senescent Cells

    Get PDF
    Background: Cells that reach ‘‘Hayflick limit’ ’ of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. Methods: We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Results: Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli

    HLA Class I Restriction as a Possible Driving Force for Chikungunya Evolution

    Get PDF
    After two decades of quiescence, epidemic resurgence of Chikungunya fever (CHIKF) was reported in Africa, several islands in the Indian Ocean, South-East Asia and the Pacific causing unprecedented morbidity with some cases of fatality. Early phylogenetic analyses based on partial sequences of Chikungunya virus (CHIKV) have led to speculation that the virus behind recent epidemics may result in greater pathogenicity. To understand the reasons for these new epidemics, we first performed extensive analyses of existing CHIKV sequences from its introduction in 1952 to 2009. Our results revealed the existence of a continuous genotypic lineage, suggesting selective pressure is active in CHIKV evolution. We further showed that CHIKV is undergoing mild positive selection, and that site-specific mutations may be driven by cell-mediated immune pressure, with occasional changes that resulted in the loss of human leukocyte antigen (HLA) class I-restricting elements. These findings provide a basis to understand Chikungunya virus evolution and reveal the power of post-genomic analyses to understand CHIKV and other viral epidemiology. Such an approach is useful for studying the impact of host immunity on pathogen evolution, and may help identify appropriate antigens suitable for subunit vaccine formulations

    Identification of a Highly Conserved H1 Subtype-Specific Epitope with Diagnostic Potential in the Hemagglutinin Protein of Influenza A Virus

    Get PDF
    Subtype specificity of influenza A virus (IAV) is determined by its two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). For HA, 16 distinct subtypes (H1–H16) exist, while nine exist for NA. The epidemic strains of H1N1 IAV change frequently and cause annual seasonal epidemics as well as occasional pandemics, such as the notorious 1918 influenza pandemic. The recent introduction of pandemic A/H1N1 IAV (H1N1pdm virus) into humans re-emphasizes the public health concern about H1N1 IAV. Several studies have identified conserved epitopes within specific HA subtypes that can be used for diagnostics. However, immune specific epitopes in H1N1 IAV have not been completely assessed. In this study, linear epitopes on the H1N1pdm viral HA protein were identified by peptide scanning using libraries of overlapping peptides against convalescent sera from H1N1pdm patients. One epitope, P5 (aa 58–72) was found to be immunodominant in patients and to evoke high titer antibodies in mice. Multiple sequence alignments and in silico coverage analysis showed that this epitope is highly conserved in influenza H1 HA [with a coverage of 91.6% (9,860/10,767)] and almost completely absent in other subtypes [with a coverage of 3.3% (792/23,895)]. This previously unidentified linear epitope is located outside the five well-recognized antigenic sites in HA. A peptide ELISA method based on this epitope was developed and showed high correlation (χ2 = 51.81, P<0.01, Pearson correlation coefficient R = 0.741) with a hemagglutination inhibition test. The highly conserved H1 subtype-specific immunodominant epitope may form the basis for developing novel assays for sero-diagnosis and active surveillance against H1N1 IAVs

    Identification of a Highly Conserved H1 Subtype-Specific Epitope with Diagnostic Potential in the Hemagglutinin Protein of Influenza A Virus

    Get PDF
    Subtype specificity of influenza A virus (IAV) is determined by its two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). For HA, 16 distinct subtypes (H1–H16) exist, while nine exist for NA. The epidemic strains of H1N1 IAV change frequently and cause annual seasonal epidemics as well as occasional pandemics, such as the notorious 1918 influenza pandemic. The recent introduction of pandemic A/H1N1 IAV (H1N1pdm virus) into humans re-emphasizes the public health concern about H1N1 IAV. Several studies have identified conserved epitopes within specific HA subtypes that can be used for diagnostics. However, immune specific epitopes in H1N1 IAV have not been completely assessed. In this study, linear epitopes on the H1N1pdm viral HA protein were identified by peptide scanning using libraries of overlapping peptides against convalescent sera from H1N1pdm patients. One epitope, P5 (aa 58–72) was found to be immunodominant in patients and to evoke high titer antibodies in mice. Multiple sequence alignments and in silico coverage analysis showed that this epitope is highly conserved in influenza H1 HA [with a coverage of 91.6% (9,860/10,767)] and almost completely absent in other subtypes [with a coverage of 3.3% (792/23,895)]. This previously unidentified linear epitope is located outside the five well-recognized antigenic sites in HA. A peptide ELISA method based on this epitope was developed and showed high correlation (χ2 = 51.81, P<0.01, Pearson correlation coefficient R = 0.741) with a hemagglutination inhibition test. The highly conserved H1 subtype-specific immunodominant epitope may form the basis for developing novel assays for sero-diagnosis and active surveillance against H1N1 IAVs

    Dcas Supports Cell Polarization and Cell-Cell Adhesion Complexes in Development

    Get PDF
    Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and β-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development

    Influenza-Specific T Cells from Older People Are Enriched in the Late Effector Subset and Their Presence Inversely Correlates with Vaccine Response

    Get PDF
    T cells specific for persistent pathogens accumulate with age and express markers of immune senescence. In contrast, much less is known about the state of T cell memory for acutely infecting pathogens. Here we examined T cell responses to influenza in human peripheral blood mononuclear cells from older (>64) and younger (<40) donors using whole virus restimulation with influenza A (A/PR8/34) ex vivo. Although most donors had pre-existing influenza reactive T cells as measured by IFNγ production, older donors had smaller populations of influenza-responsive T cells than young controls and had lost a significant proportion of their CD45RA-negative functional memory population. Despite this apparent dysfunction in a proportion of the older T cells, both old and young donors' T cells from 2008 could respond to A/California/07/2009 ex vivo. For HLA-A2+ donors, MHC tetramer staining showed that a higher proportion of influenza-specific memory CD8 T cells from the 65+ group co-express the markers killer cell lectin-like receptor G1 (KLRG1) and CD57 compared to their younger counterparts. These markers have previously been associated with a late differentiation state or immune senescence. Thus, memory CD8 T cells to an acutely infecting pathogen show signs of advanced differentiation and functional deterioration with age. There was a significant negative correlation between the frequency of KLRG1+CD57+ influenza M1-specific CD8 T cells pre-vaccination and the ability to make antibodies in response to vaccination with seasonal trivalent inactivated vaccine, whereas no such trend was observed when the total CD8+KLRG1+CD57+ population was analyzed. These results suggest that the state of the influenza-specific memory CD8 T cells may be a predictive indicator of a vaccine responsive healthy immune system in old age
    corecore