27 research outputs found

    The impact of chromophore choice on the assembly kinetics and primary photochemistry of a red/green cyanobacteriochrome

    Full text link
    Cyanobacteriochromes (CBCRs) are bi-stable photoreceptor proteins with high potential for biotechnological applications. Most of these proteins utilize phycocyanobilin (PCB) as a light-sensing co-factor, which is unique to cyanobacteria, but some variants also incorporate biliverdin (BV). The latter are of particular interest for biotechnology due to the natural abundance and red-shifted absorption of BV. Here, AmI-g2 was investigated, a CBCR capable of binding both PCB and BV. The assembly kinetics and primary photochemistry of AmI-g2 with both chromophores were studied in vitro. The assembly reaction with PCB is roughly 10Ă— faster than BV, and the formation of a non-covalent intermediate was identified as the rate-limiting step in the case of BV. This step is fast for PCB, where the formation of the covalent thioether bond between AmI-g2 and PCB becomes rate-limiting. The photochemical quantum yields of the forward and backward reactions of AmI-g2 were estimated and discussed in the context of homologous CBCRs

    Vibrational couplings between protein and cofactor in bacterial phytochrome Agp1 revealed by 2D-IR spectroscopy

    Full text link
    Significance Two-dimensional infrared absorption (2D-IR) spectroscopy is severely limited in its application to larger proteins due to broad and overlapping signals in the amide I region. Here, we overcome this limitation and isolate couplings between pairwise two single-molecular groups in the biotechnologically relevant phytochrome Agp1 (510 aa) by calculating light-induced difference spectra. In phytochromes, the photoactivation of a cofactor with a relatively small structural change triggers a large-scale refolding of big parts of the protein, but the mechanism of that interaction is not understood. We observe cross-peaks in the 2D-IR spectra that are directly related to the changing dipole coupling between the cofactor and the part of the protein that refolds, suggesting that both sites stabilize each other mutually. Abstract Phytochromes are ubiquitous photoreceptor proteins that undergo a significant refolding of secondary structure in response to initial photoisomerization of the chromophoric group. This process is important for the signal transduction through the protein and thus its regulatory function in different organisms. Here, we employ two-dimensional infrared absorption (2D-IR) spectroscopy, an ultrafast spectroscopic technique that is sensitive to vibrational couplings, to study the photoreaction of bacterial phytochrome Agp1. By calculating difference spectra with respect to the photoactivation, we are able to isolate sharp difference cross-peaks that report on local changes in vibrational couplings between different sites of the chromophore and the protein. These results indicate inter alia that a dipole coupling between the chromophore and the so-called tongue region plays a role in stabilizing the protein in the light-activated state

    Transient 2D IR spectroscopy and multiscale simulations reveal vibrational couplings in the Cyanobacteriochrome Slr1393-g3

    Full text link
    Cyanobacteriochromes are bi-stable photoreceptor proteins with desirable photochemical properties for biotechnological applications such as optogenetics or fluorescence microscopy. Here, we investigated Slr1393-g3, a cyanobacteriochrome that reversibly photo-switches between a red-absorbing (Pr) and green-absorbing (Pg) form. We applied advanced IR spectroscopic methods to track the sequence of intermediates during the photocycle over many orders in magnitude in time. In the conversion from Pg to Pr, we have revealed a new intermediate which precedes the Pr formation by using transient IR spectroscopy. In addition, stationary and transient 2D~IR experiments measured the vibrational couplings between different groups of the chromophore and the protein during these intermediate states. Anharmonic QM/MM calculations predict spectra in close-to-quantitative agreement with experimental 2D~IR spectra of the initial and the final state of the photocycle. They facilitate the assignment of the IR spectra and provide an atomistic insight into the coupling mechanism. This serves as a basis for the interpretation of the spectroscopic results and suggests structural changes of the intermediates along the photocycle

    The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP

    Get PDF
    Bacteriophytochromes are promising tools for tissue microscopy and imaging due to their fluorescence in the near-infrared region. These applications require optimization of the originally low fluorescence quantum yields via genetic engineering. Factors that favour fluorescence over other non-radiative excited state decay channels are yet poorly understood. In this work we employed resonance Raman and fluorescence spectroscopy to analyse the consequences of multiple amino acid substitutions on fluorescence of the iRFP713 benchmark protein. Two groups of mutations distinguishing iRFP from its precursor, the PAS-GAF domain of the bacteriophytochrome P2 from Rhodopseudomonas palustris, have qualitatively different effects on the biliverdin cofactor, which exists in a fluorescent (state II) and a non-fluorescent conformer (state I). Substitution of three critical amino acids in the chromophore binding pocket increases the intrinsic fluorescence quantum yield of state II from 1.7 to 5.0% due to slight structural changes of the tetrapyrrole chromophore. Whereas these changes are accompanied by an enrichment of state II from ~40 to ~50%, a major shift to ~88% is achieved by remote amino acid substitutions. Additionally, an increase of the intrinsic fluorescence quantum yield of this conformer by ~34% is achieved. The present results have important implications for future design strategies of biofluorophores.DFG, 221545957, SFB 1078: Proteinfunktion durch ProtonierungsdynamikDFG, 53182490, EXC 314: Unifying Concepts in Catalysi

    Structural snapshot of a bacterial phytochrome in its functional intermediate state

    Get PDF
    Phytochromes are modular photoreceptors of plants, bacteria and fungi that use light as a source of information to regulate fundamental physiological processes. Interconversion between the active and inactive states is accomplished by a photoinduced reaction sequence which couples the sensor with the output module. However, the underlying molecular mechanism is yet not fully understood due to the lack of structural data of functionally relevant intermediate states. Here we report the crystal structure of a Meta-F intermediate state of an Agp2 variant from Agrobacterium fabrum. This intermediate, the identity of which was verified by resonance Raman spectroscopy, was formed by irradiation of the parent Pfr state and displays significant reorientations of almost all amino acids surrounding the chromophore. Structural comparisons allow identifying structural motifs that might serve as conformational switch for initiating the functional secondary structure change that is linked to the (de-)activation of these photoreceptors

    Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2

    Get PDF
    Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.DFG, 221545957, SFB 1078: Protonation Dynamics in Protein FunctionTU Berlin, Open-Access-Mittel – 202
    corecore