6 research outputs found

    An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe

    Get PDF
    We updated a previous meta-analysis of the reported prevalence of Borrelia burgdorferi s.l. (Bb) in questing nymphs of Ixodes ricinus with literature from January 2010-June 2017. This resulted in 195 new papers providing the prevalence of Bb for 926 georeferenced records. Previously obtained geo-referenced data (878 records, years 2000-2010) were appended for modelling. The complete dataset contains data from 82,004 questing nymphs, resulting in 558 records of B. afzelii, 404 of B. burgdorferi s.s. (only 80 after the year 2010), 552 of B. garinii, 78 of B. lusitaniae, 61 of B. spielmanii, and 373 of B. valaisiana. The most commonly reported species are B. afzelii, B. garinii and B. valaisiana largely overlapping across Europe and their prevalence is associated with portions of the environmental niche. Highest prevalence occurs in areas of 280º-290º (Kelvin) of mean annual temperature experiencing a small amplitude, steady spring slope, and high mean values of and a moderate spring rise of vegetation vigor. Low prevalence occurs in sites with low and a noteworthy annual amplitude of temperature and NDVI (colder areas with abrupt annual changes of vegetation). We trained a neural network for predicting occurrence and prevalence, providing a correct classification rate of 89.5%. These results confirm the association of prevalence of the three most commonly reported species of Bb in Europe to parts of the environmental niche and provides a statistically tractable framework for analyzing trends under scenarios of climate change

    Climate change and zoonotic infections in the Russian Arctic

    No full text
    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax
    corecore