45 research outputs found

    Uticaj raličitih supstrata na morfološka,fiziološka i hemijska svojstva odabranih sojeva gljve bukovače Pleurotus ostreatus (Jacq.) P. Kumm. 1871

    Get PDF
    Three strains of oyster mushroom (P. ostreatus NS 77, NS 355, and 244) were grown on substrates made from four crops (wheat, maize, soybean, and sunflower), as individual substrates or in combination with wheat straw. After fruit maturity,  mushroom growing, morphological, and chemical properties were analysed, as well as chemical and microbiological analyses of fresh and used substrates. All three strains showed maximum yields on soybean substrate (S5), and minimum yields on wheat substrate (S1). A large variability among the strains was observed based on the morphological properties. The strain NS 77 has caps of the smallest weight,  width and length, the largest number of fruiting bodies, and the longest stalks. The  strain NS 244 have caps of the largest weight, width and length, the lowest number of fruiting bodies and stalk length, but the largest width of the stalks. Regarding water regime, maize substrate (S6) was the best, while sunflower (S7) was the poorest. Ash content was the highest in maize substrate (S6) and the lowest in wheat  substrate (S1). Potassium content in the stalk was higher than in the cap, which is opposite from other micro- and macro elements. Cellulose content was higher in all fresh substrates than in the used substrates after the strains have fruited, while ash content was higher in the used substrates. Concentration of total number of microorganisms, abundance of ammonifiers and saprophytic fungi in the unsterilized substrates were lower than in the used ones. Dehydrogenase activity was the highest in substrates after fruiting of NS 244, while cellulose enzyme complex varied regarding the strain and substrate.Tri soja gljive bukovače, P. ostreatus NS 77, P. ostreatus NS 355 i P. ostreatus 244, gajena su na supstratima četiri biljne vrste, pšenica, kukuruz, soja i suncokret, kao samostalni supstrati i u kombinaciji sa pšeničnom slamom. Nakon plodonošenja vršena su ispitivanja odgajivačkih, morfoloških, hemijskih, svojstva gljiva, kao i hemijske i mikrobiološke    sirovim supstratima u odnosu na sadržaj celuloze u supstratima nakon plodonošenja sojeva, dok je kod sadržaja pepela obrnuto, u sirovim supstratima je niži u odnosu na supstrate nakon plodonošenja. Koncentracija ukupnog broja mikroorganizama, brojnost amonifikatora i brojnost saprofitnih gljiva na nesterilisanim supstratima je niža nego na iskorištenim supstratima. Dehidrogenazna aktivnost  je najviša na supstratima nakon plodonošenja soja NS 244, dok kod enzimskog kompleksa celulaza varira u zavisnosti od soja i supstrata Kod sva tri soja maksimalni prinosi su bili na supstratu Soja (S5), a minimlni na supstratu Pšenica (S1). Na osnovu morfoloških osobine konstatovana je velika varijabilnist između sojeva. Supstrat Kukuruz (S6) se pokazao kao najbolji, sa aspekta vodnog režima, dok se Suncokret (S7) pokazao kao najlošiji. Na supstratu Kukuruz (S6) je najviši, a na supstratu Pšenica (S1) je najniži sadržaj pepela. Sadržaj natrijuma u nožici je veći od sadržaja u šeširu, što je obrnuto u odnosu na druge mikroelemente i makroelemente. Sadržaj celuloze je viši u svim  sirovim supstratima, dok  je kod sadržaja pepela obrnuto. Brojnost svih mikroorgnaizma na nesterilisanim supstratima je niža nego na iskorištenim supstratima.  Dehidrogenazna  je najviša na supstratima nakon plodonošenja soja NS 244, dok kod enzimskog kompleksa celulaza varira u zavisnosti od soja i supstrata

    Influence of Different Substrates on Morphological, Physiological and Chemical Properties of Selected Strains of Oyster Mushroom Pleurotus ostreatus (Jacq.) P. Kumm. 1871

    Get PDF
    Tri soja gljive bukovače, P. ostreatus NS 77, P. ostreatus NS 355 i P. ostreatus 244, gajena su na supstratima četiri biljne vrste, pšenica, kukuruz, soja i suncokret, kao samostalni supstrati i u kombinaciji sa pšeničnom slamom. Nakon plodonošenja vršena su ispitivanja odgajivačkih, morfoloških, hemijskih, svojstva gljiva, kao i hemijske i mikrobiološke    sirovim supstratima u odnosu na sadržaj celuloze u supstratima nakon plodonošenja sojeva, dok je kod sadržaja pepela obrnuto, u sirovim supstratima je niži u odnosu na supstrate nakon plodonošenja. Koncentracija ukupnog broja mikroorganizama, brojnost amonifikatora i brojnost saprofitnih gljiva na nesterilisanim supstratima je niža nego na iskorištenim supstratima. Dehidrogenazna aktivnost  je najviša na supstratima nakon plodonošenja soja NS 244, dok kod enzimskog kompleksa celulaza varira u zavisnosti od soja i supstrata Kod sva tri soja maksimalni prinosi su bili na supstratu Soja (S5), a minimlni na supstratu Pšenica (S1). Na osnovu morfoloških osobine konstatovana je velika varijabilnist između sojeva. Supstrat Kukuruz (S6) se pokazao kao najbolji, sa aspekta vodnog režima, dok se Suncokret (S7) pokazao kao najlošiji. Na supstratu Kukuruz (S6) je najviši, a na supstratu Pšenica (S1) je najniži sadržaj pepela. Sadržaj natrijuma u nožici je veći od sadržaja u šeširu, što je obrnuto u odnosu na druge mikroelemente i makroelemente. Sadržaj celuloze je viši u svim  sirovim supstratima, dok  je kod sadržaja pepela obrnuto. Brojnost svih mikroorgnaizma na nesterilisanim supstratima je niža nego na iskorištenim supstratima.  Dehidrogenazna  je najviša na supstratima nakon plodonošenja soja NS 244, dok kod enzimskog kompleksa celulaza varira u zavisnosti od soja i supstrata.Three strains of oyster mushroom (P. ostreatus NS 77, NS 355, and 244) were grown on substrates made from four crops (wheat, maize, soybean, and sunflower), as individual substrates or in combination with wheat straw. After fruit maturity,  mushroom growing, morphological, and chemical properties were analysed, as well as chemical and microbiological analyses of fresh and used substrates. All three strains showed maximum yields on soybean substrate (S5), and minimum yields on wheat substrate (S1). A large variability among the strains was observed based on the morphological properties. The strain NS 77 has caps of the smallest weight,  width and length, the largest number of fruiting bodies, and the longest stalks. The  strain NS 244 have caps of the largest weight, width and length, the lowest number of fruiting bodies and stalk length, but the largest width of the stalks. Regarding water regime, maize substrate (S6) was the best, while sunflower (S7) was the poorest. Ash content was the highest in maize substrate (S6) and the lowest in wheat  substrate (S1). Potassium content in the stalk was higher than in the cap, which is opposite from other micro- and macro elements. Cellulose content was higher in all fresh substrates than in the used substrates after the strains have fruited, while ash content was higher in the used substrates. Concentration of total number of microorganisms, abundance of ammonifiers and saprophytic fungi in the unsterilized substrates were lower than in the used ones. Dehydrogenase activity was the highest in substrates after fruiting of NS 244, while cellulose enzyme complex varied regarding the strain and substrate

    Uticaj genotipa i spoljne sredine na prinos i kvalitet jesenjeg belog luka

    Get PDF
    Genotype response to changeable environmental factors as ex-pressed through genotype x environment interaction offers important in-formation to breeders and growers as end users. Bulb mass and dry matter yield per bulb are major components of garlic yield and quality. The paper analyzed G x E interaction of 18 winter garlic genotypes (13 populations and five clones) across three growing seasons. Main effects of the genotype, environment and their interaction were determined applying the AMMI model. Year was the major source of variability for bulb mass (70.7%), while G x E interaction amounted to 6.18%. Dry matter yield was most variable under the effect of genotype (46.91%) and the interaction was high, 13.45%. The first principal component was important for bulb mass and dry matter yield since it explained 77.52% and 78.39% of the G x E interactions, respectively. A biplot was constructed to graphically represent the G x E interaction.Značajnu informaciju o genotipu za oplemenjivače i proizvođače kao krajnje korisnike, predstavlja njegov odgovor na promenljive faktore sredine, koji je izražen preko interakcije genotipa sa spoljnom sredinom. Prinos i kvalitet belog luka predstavljeni su masom lukovice i prinosom suve materije po lukovice. U radu je analizirana G x E interakcija 18 genotipova (13 populacija i 5 klonova) jesenjeg belog luka tokom tri vegetacione sezone. Primenom AMMI modela ustanovljeni su glavni efekti genotipova za ispitivane osobine preko glavnog efekta sredine za genotipove i njihove interakcije. Najveći izvor varijabilnosti za masu lukovice imale su godine (70,7%) dok je interakcija iznosila 6,18%. Prinos suve materije je najviše varirao pod uticajem genonotipa (46,91%) i visok udeo interakcije 13,45 %. Za masu lukovice i prinos suve materije je značajna prva glavna komponenta, kojom je objašnjeno 77,52% odnosno 78,39% G x E interakcije. Korišćen je biplot da bi se grafički predstavila G x E interakcija

    Upotreba ostataka biljne proizvodnje kao i neiskorištenih objekata u proizvodnji gljiva

    Get PDF
    In last two decades, domestic growers were showing an increasing interest in the oyster mushroom. A study has been undertaken to determine factors that directly affect the yield performance and quality of the oyster mushroom. Yield performance is directly correlated with the genetic potential of mushroom strain, conditions for growing and the quality of substrate. The substrate is typically prepared from harvest residues of wheat, soybean, rice, bean, pea or cotton as well as from byproducts of corn, sugarcane or sunflower processing. Because of its low value, the substrate is usually discarded after use (Bugarski, 2000). Choice of substrate depends on agricultural production potentials of the country in which mushroom growing is organized. Regarding the facilities for mushroom growing, vacant old buildings are typically used for that purpose. The Netherlands seems to be an exception, where new facilities, equipped for microclimate control, are erected for mushroom growing.Povećanje proizvodnje bukovače u poslednje dve decenije, uslovilo je ispitivanja faktora koji direktno utiču na kvalitet i visinu njenog prinosa. Osim genetskog potencijala soja prinos je u direktnoj korelaciji sa uslovima proizvodnje i kvalitetom supstrata. Za proizvodnju bukovače supstrat se priprema od ostataka biljne proizvodnje kao što su pšenična, sojina, pirinčana i dr. slame, pasuljevina, graškovina, stabljike pamuka, stabljike, kočanke i drugi otpadni delovi kukuruzne industrije, šećerna trska, suncokretove ljuspice i stabljika i dr. Ovaj materijal se obično ne koristi u daljoj proizvodnji, već se često spaljuje zbog njegove male vrednosti (Bugarski i sar., 2000). Izbor supstrata za gajenje bukovače je u zavisnosti od sirovinskih potencijala zemlje u kojoj se bukovača gaji, a i izbor objekata je sličan. Uglavnom su to stari korišteni objekti, sa izuzetkom Holandije, u kojima se mogu kontrolisati temperatura, vlaga i ventilacija, kao i difuzno osvetljenje u trajanju od 8 časova

    Bolesti paprike i paradajza

    Get PDF
    There is a large number of pepper and tomato diseases which considerably reduce their yields and/or quality. Disease agents are either fungi bacteria, or viruses. Parasitic fungi are particularly important disease agents since mycoses are most frequent diseases in commercial production.Veliki je broj prouzrokovača biljnih bolesti, koje smanjuju prinos ili njegov kvalitet i dovode do velikih gubitaka u proizvodnji paprike i paradajza. Najznačajniji prouzrokovači bolesti su gljive, bakterije i virusi. Posebno mesto zauzimaju parazitne gljive i s mikozama se najčešće susrećemo u praksi. Povrtarska proizvodnja ima svoje specifičnosti kako u načinu gajenja (zaštićeni prostor i otvoreno polje), tako i korišćenja. Finalni proizvod paprike i paradajza sklon je brzom kvarenju, s toga se mora na vreme koristiti, u svežem ili prerađenom stanju

    Novi eksperimentalni hibrid kupusa pogodan za ranu proizvodnju

    Get PDF
    The paper analyzes experimental hybrids of early cabbage developed at the Institute of Field and Vegetable Crops in the previous period. The hybrids were tested together for two years and then one (H17) was chosen and submitted to the Variety Commission of the Republic of Serbia. In 2011, the experimental hybrid H17 was officially released as an early cabbage hybrid and registered under the name of NS Mendo F1. The hybrid had been developed by crossing two early lines, one of which was sterile. It is characterized by a short growing season - 65 days from transplanting to harvest. The head weight ranges from 2.5 to 3.5 kg depending on the cultural practice applied. The head is light green in color, sweet-tasting, and suitable for fresh consumption. The hybrid’s traits that contributed significantly to the formation of the first principal component were in fact those that the breeders attach most importance to in their breeding programs. These are the traits that directly influence the market value of a new hybrid and make a given hybrid recognizable on the market. Most notable among such traits are head weight and the weight of the useful part of the head.U radu su analizirani eksperimentalni hibridi ranog kupusa stvoreni u prethodnom periodu u Institutu za ratarstvo i povrtarstvo. Hibridi su međusobno dve godine testirani, iz čega je jedan hibrid (H17) izabran i prijavljen Republičkoj sortnoj komisiji. 2011 godine je eksperimentalni hibrid H17 i zvanično priznat kao rani hibrid kupusa, te registrovan pod imenom NS Mendo F1. Navedeni rani hibrid je nastao ukrštanjem dve linije kupusa, od kojih je jedna sterilna linija. Karakteriše se kratkom dužinom vegetacije, tj. 65 dana od rasađivanja do berbe. Masa glavice se kreće od 2,5 kg do 3,5 kg u zavisnosti od agrotehnike. Glavica je svetlo zelene boje, slatkog ukusa pogodna za svežu potrošnju. Osobine koje su pokazale značajan udeo na formiranje varijabilnosti prve glavne komponente, su u stvari i osobine na koje selekcionari daju i najveći značaj u oplemenjivačkim programima. To su svojstva koja direktno utiču na formiranje tržišne vrednosti novi hibrida, i čine pojedine hibride prepoznatljive na tržištu. To se odnosi pre svega na masu glavice i masu korisnog dela glavice

    Načini nasleđivanja visine i širine glavice kupusa - Brassica oleracea var. Capitata L.

    Get PDF
    A diallel cross (including reciprocals), involving seven open-pollinated varieties having different head shape was made and 42 F1 hybrids were produced under greenhouse conditions and in the experimental field of Scientific Institute of field and vegetable crops in Novi Sad. The objective of this paper was to determine mean value, components of variability and mode of inheritance of two morphological characters of head shape, head width and head height. In our study superdominance occurred the most with head height (as many as 23 times) and the least with head width (16 times). The negative heterosis was not occurred in any combination as like as partial dominance of the poorer parent. The results showed significant divergence of the traits under study, which will also constitute an important source of variability for future cycles of selection in our Institute.Napravljena su dialelna (uključujući recipročna) ukrštanja sedam slobodnooprašujućih varijeteta kupusa sa različitim oblicima glavice, kao i 42 F1 hibrida, u poljskim i veštačkim uslovima u Naučnom institutu za ratarstvo i povrtarstvo u Novom Sadu. Cilj rada je određivanje srednje vrednosti komponenti varijabilnosti i načina nasleđivanja dve morfološke karakteristike oblika glavice, visina i širina. U našem radu superdominantnost se javlja najviše kod visine glavice (u 23 slučaja) a najmanje kod njene širine (16 puta). Negativni heterozis se nije javio ni u jednoj kombinaciji kao ni delimična dominantnost lošijeg roditelja. Rezultati ukazuju značajne razlike izučavanih karakteristika, što predstavlja značajan izvor varijabilnosti za dalje cikluse selekcije u našem Institutu

    Savremena proizvodnja paradajza

    Get PDF
    Tomato (Lycopersicon esculentum Mill) is one of the most common and economically important vegetable crops grown in an open field and indoors. In Serbia, it is grown on about 20,000 ha and 180,0001 of tomato fruit are harvested. The average yields per hectare in the country are very low around 9,000 kg/ha. The reasons for such low yields do not lie in the genetic potential of tomato cultivars and hybrids grown but in the inadequacy of the growing technologies used and the reduced or inadequate application of mineral fertilizers and plant protection chemicals. The present paper describes tomato production and its demands related to growing conditions water requirements as affected by temperature, crop rotation, and soil selection. It also discusses fertilizer application in this crop as affected by soil fertility as well as tomato harvesting. Special attention is devoted to calculations used in outdoor tomato production from seeds and to the economy of tomato production. Tomato fruit production can be highly profitable, provided it makes use of appropriate cultural practices scientific discoveries and achievements of modern vegetable production.Paradajz (Lycopersicon esculentum Mill) je jedna od najčešćih i ekonomski najznačajnijih povrtarskih vrsta, koje se gaje na otvorenom polju i u zaštićenom prostoru. U Srbiji se paradajz gaji na oko 20.000 ha, sa ostvarenom proizvodnjom od 180.000 t ploda. Ostvareni prosečni prinosi po hektaru su veoma niski (u Srbiji) i kreću se oko 9.000 kg po hektaru. Razlozi ovako niskih prinosa nisu u genetskom potencijalu sorti i hibrida već u neadekvatnoj tehnologiji gajenja, smanjenoj i neadekvatnoj primeni mineralnih đubriva i sredstava za zaštitu bilja. U radu su dati uslovi uspevanja potrebe za vodom u zavisnosti od temperature, plodored i izbor zemljišta za proizvodnju paradajza. Dat je osvrt na đubrenje paradajza u zavisnosti od plodnosti zemljišta, kao i berba paradajza. Posebno je obrađena kalkulacija proizvodnje paradajza na otvorenom polju iz direktne setve i ekonomičnost proizvodnje. Proizvodnja ploda paradajza je profitabilna i visoko akumulativna, ukoliko se primenjuju: pravilna agrotehnika, naučna saznanja i dostignuća savremene povrtarske proizvodnje

    Proizvodnja povrtarske paprike na otvorenom polju iz rasada

    Get PDF
    Pepper (Capsicum L) has great economic significance in our country, where it is one of the most important crops. It has high nutritional and biological value as well as many uses, including fresh consumption, pickling, baking and freezing, It can also be used as a condiment or as raw material for various types of industrial processing. Pepper is a vegetable that makes use of intensive agricultural systems and its cultivation is labor-intensive. It produces large profits per unit area. In Serbia, and especially in Vojvodina there are highly favorable agroecological conditions for pepper growing. To ensure high and stable pepper yields, growers must provide the crop with fertile and well-structured soil, appropriate crop rotation, top-quality tillage and seedbed preparation, and adequate fertilizer application, both organic and mineral. The success of pepper production also depends on the quality of transplant production, the proper timing of sowing when growing transplants, the process of transplant tending and preparation, and the transplanting procedure itself. High and stable pepper yields are obtained by the use of appropriate growing technologies during the growing season, most notably by the use of cultivation, irrigation, top dressing, protection from weeds, pests and diseases, and well-timed harvesting.Paprika (Capsicum L) u našoj zemlji ima veliki privredni značaj. Spada u grupu najznačajnijih kultura. Ima visoku hranljivu i biološku vrednost. Može se koristiti na različite načine, kao sveža, kisela, pečena, smrznuta dodatak raznim jelima a u industriji predstavlja sirovinu za različite vidove prerade. Spada u grupu intenzivnih povrtarskih kultura. Zahteva veliko angažovanje ljudskoga rada. Ona je visokoakumulativna kultura, jer ostvaruje visok dohodak po jedinici površine. U Srbiji, a posebno u Vojvodini, postoje veoma povoljni agroekološki uslovi za uspešno gajenje povrtarske paprike. Za ostvarivanjevisokih i stabilnih prinosa neophodno je obezbediti plodno i strukturno zemljište, odgovarajući plodored, odnosno plodosmenu, i kvalitetnu obradu i predsetvenu površinsku pripremu zemljišta kao i primene đubrenja kako organskih tako i mineralnih. Uspešna proizvodnja paprike zavisi nadalje, od kvalitetne proizvodnje rasada, pravovremene setve za proizvodnju rasad, nege, pripreme rasada i rasađivanje. Stabilni i visoki prinosi se ostvaruju primenom odgovarajuće tehnologije gajenjem u toku vegetacije, a to je pre svega, kultiviranje, navodnjavanje, prihranjivanje i zaštita od korova, bolesti i štetočina, kao i pravovremene berbe ploda paprike

    Zašto se pojavljuje rastresitost glavice kod kupusa?

    Get PDF
    Loose head packing is a frequent problem in cabbage production. This undesirable characteristic is typically attributed to the cabbage itself, when it is grown under unfavorable conditions and when it receives poor cultivation practices. Because of market demand on one side and weather conditions and cultivation practices on the other, cabbage is mainly harvested in a single turn. Furthermore, the harvested heads are not handled with due care. In other words, correct choice and application of cultivation practices may greatly improve head packing in the cabbage.Rastresitost ili slaba zbijenost glavica je problem na koji svaki proizvođač kupusa nailazi tokom proizvodnje. Često se ovo nepoželjno svojstvo pripisuje samom kupusu, koji više puta raste u manje povoljnim uslovima uz nepotpunu agrotehniku, što ima za posledicu slabiju zbijenost. Na jednoj strani zbog tržišta, na drugoj zbog vremenskih uslova i agrotehnike, berba kupusa se uglavnom obavlja jednokratno. Takođe, sa manje pažnje se manipuliše glavicama. Kad se svi ovi faktori saberu, glavica kupusa jednostavno nema optimalne uslove za pravilno formiranje, zbog čega se agrotehnika mora prilagoditi svakoj fenofazi rasta kupusa, a posebno periodu zavijanja glavice i berbe, kad je zbijenost glavice pri kraju formiranja
    corecore