2 research outputs found

    Inventory and First Assessment of Oil and Gas Wells Conversion for Geothermal Heat Recovery in France

    Get PDF
    International audienceThe repurposing of oil and gas wells for geothermal energy production and resource assessment can provide sustainable solutions to meet the objectives of renewable energy balance targeted within 2030 by the French Parliament in the "energy transition law for a green growth" promulgated in August 2015. Approximately 12 500 wells have been drilled in France since the 19th century for hydrocarbon reservoir exploration and exploitation. Most of them are closed and abandoned or nearing the end of production due to the planned end of exploitation of hydrocarbons in France by 2040. Several sustainable cases of conversion for geothermal energy production have been reported in France and abroad, demonstrating the possibility of using former wells for heat extraction from aquifers or coaxial heat exchangers. This paper presents an overview of the wells drilled in France and the methodology proposed to identify and rank them according to the a priori feasibility of open and closed loop conversion. To this purpose, wells data, geological and hydrothermal information acquired by the BRGM (geometry and dynamic aquifer properties from models) and land occupation have been cross-referenced. The quantitative overview should be followed by a detailed analysis of selected wells to assess their conversion potential for geothermal energy production (possible use at surface, well drilling and abandonment reports, hydrodynamic properties of the reservoir, technology to be implemented, etc.)

    CO2-Dissolved : A Novel Approach to Combining CCS and Geothermal Heat Recovery

    Get PDF
    International audienceThis paper presents the outline of the CO2-DISSOLVED project whose objective is to assess the technical-economic feasibility of a novel CCS concept integrating geothermal energy recovery, aqueous dissolution of CO2 and injection via a doublet system, and an innovative post-combustion CO2 capture technology. Compared to the use of a supercritical phase, this approach offers substantial benefits in terms of storage safety, due to lower brine displacement risks, lower CO2 escape risks, and the potential for more rapid mineralization. However, the solubility of CO2 in brine will be a limiting factor to the amount of CO2 that can be injected. Consequently, and as another contributing novel factor, this proposal targets low to medium range CO2-emitters (ca. 10-100 kt/yr), that could be compatible with a single doublet installation. Since it is intended to be a local solution, the costs related to CO2 transport would then be dramatically reduced, provided that the local underground geology is favorable. Finally, this project adds the potential for energy and/or revenue generation through geothermal heat recovery. This constitutes an interesting way of valorization of the injection operations, demonstrating that an actual synergy between CO2 storage and geothermal activities may exist
    corecore