424 research outputs found

    Manejo del paciente agitado en Urgencias

    Get PDF
    Cada vez son más los casos en donde una persona muere durante el forcejeo que mantiene con las Fuerzas y Cuerpos de Seguridad del Estado durante el proceso de detención. Esto supone un gran reto profesional para el médico forense que realiza la autopsia. En muchas ocasiones, los resultados obtenidos tras la autopsia no son entendidos por la sociedad, familiares del fallecido ni correctamente divulgados por los medios de comunicación, pareciendo que dicha muerte queda en un limbo judicial. Estas muertes, generalmente son consecuencia del síndrome de delirium agitado. Este síndrome no es bien conocido en nuestro país por parte de médicos ni por cuerpos de seguridad. Se engloban dentro de las muertes en privación de libertad o death in custody. En su producción intervienen factores como la patología previa del paciente, consumo de drogas, especialmente cocaína, y la forma de llevar a cabo el proceso de inmovilización del detenido. Este cuadro se trata de una verdadera urgencia médica que requiere una actuación sanitaria inmediata.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Mechanism of 2003, 2007 and 2009 earthquakes (S. Vicente Cape) and implications for the 1755 Lisbon earthquake

    Get PDF
    The San Vicente Cape region (SW Iberia) is of great seismological interest due to its tectonic complexity and for the occurrence of the 1755 Lisbon mega-earthquake. A structure capable of generating such large earthquake has not been convincingly found but authors agree with the possible occurrence in the future of a similar earthquake offshore of San Vicente Cape.We have studied the mechanism of three earthquakes in this area: 29 July 2003 (Mw = 5.3), 12 February 2007 (Mw = 6.1) and 17 December 2009 (Mw = 5.5) which throw light on the dynamics of the region. These earthquakes are the largest occurred in the last 40 years at the western of San Vicente Cape. From inversion of body waves and kinematic slip distribution, we have obtained that the three shocks have similar characteristics (dimensions, maximum slip, stress drop, source time function, focal depth and rupture velocity), but we can observe differences on geometry of the rupture that reflect the great seismotectonics complexity of the zone. The 2003 and 2007 focal mechanisms are similar, corresponding to thrusting motion but the 2009 earthquake has dip-slip motion on a vertical plane. The ruptures planes for the three shocks, deduced from the slip distribution, show ruptures on NE-SW planes, with the released energy propagating to NE direction, compatible with the regional horizontal compression in the NW-SE direction produced by the convergence between the Eurasian and African plates. This direction of faulting may be applied to the generation of the 1755 Lisbon earthquake, in terms of a complex rupture along NE-SW trending thrust faults at the Gorringe Bank, the Horseshoe Scarp and the Marques de Pombal Fault, with rupture propagating in NE direction toward the coast of Portugal and which may explain the large damage at Lisbon city

    Recent Seismic Activity in the Azores Region

    Get PDF
    This seismic activity in the Azores Region is characterized by sequences of low-magnitude events, usually with epicenter off-shore. These seismic sequences are sometimes triggered by larger events, felt by the population, that could produce significant material and human losses. This characteristic is confirmed by the historical and instrumental seismicity, in particular by the recent earthquakes occurred on 1980 (Mw=6.8), 1997 (Mw=6.2), 1998 (Mw=6.2) and 2007 (Mw=6.3, Mw=6.1). The mechanism responsible for this spatial and temporal seismic pattern still yet not very well known. In this work we discuss the recent (2007) seismic activity of the Azores region by analyzing the spatial and temporal distribution of seismic events associated with two sequences with different characteristics. The fisrt one is a seismic swarm started on April 21st 2007, centered at about 40 kilometers west of the Faial Island (maximum magnitude mb=4.0). The second one corresponds to an aftershock sequence associated to the events of 2007/04/05 (Mw=6.3) and 2007/04/07 (Mw=6.1), both with epicenter in the Formigas Islets and felt (I=V/VI in Mercali scale) in S. Miguel. We calculate the static Coulomb stress change for both events using focal mechanisms derived from the inversion of body waves. We find that the static stress change caused by the April 5 event is higher, about 2 bar at the location of the second event (April 7), triggering the second rupture. Locations of aftershocks do not agree well with areas of increased Coulomb failure stress

    The 2007 Azores earthquakes: A case of triggering?

    Get PDF
    On 5 April (Mw=6.3) and 7 April 2007 (Mw=6.1 ) two earthquakes occur at the Formigas Islets (Azores Islands), both with same epicenter and felt (I=V/VI MSK) in S. Miguel Island. The rupture process of these earthquakes has been studied from body wave inversion of broad band data at telesesimic distances. Results obtained shown normal faulting for both shocks, with planes oriented in NW–SE direction, with focus at shallow depth (10 km and 6 km respectively). The slip distribution over the fault plane (152/44/-88) shows for the 05-04-07 event, the rupture propagating downward and a duration of 12s for the source time function. For the 07-04-07 event, the slip distribution over the fault plane (125/52/-81) shows de rupture propagating downward and duration of 10s for the STF. From these results we have estimated the static Coulomb stress change. We find that the static stress change caused by the 5 April event is higher, about 2 bar at epicenter the location of the second event (April 7), triggering the second rupture. Locations of aftershocks do not agree well with areas of increased Coulomb failure stress, which can be explained by the complexities of the rupture process oy by uncertainties at the hypocerter locatio

    Seismic source in the Iberian-African plate boundary

    Get PDF
    The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in the depth earthquakes (h » 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 ‡ mb ‡ 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes

    Earthquake Source and Seismic Strain Rate: Portugal in the Context of The Western Part of the Eurasia - Africa Plate Boundary

    Get PDF
    Fault plane solutions, stress-pattern and deformation rate along the Western part of the Eurasia-Africa Plate Boundary, particu- larly between Azores triple junction and Gibraltar are analyzed. A selection of shallow depth seismic events (1.9 = M = 8.0) occurred in the period 1900-2003 have been carefully checked and analysed. The distribution of the focal mechanisms have been analysed by means of different techniques, projections and graphic representations. Seismic moment tensors, moment rate, slip velocity and b values have been estimated. Based on these results, we propose the following: 1) Between the Azores triple junction and Terceira island predominates strike- slip motion with nodal planes trending NNW-SSE and ENW-SSE; between the Terceira island and the beginning of the of Gloria fault the normal mechanisms predominate with nodal plans in the direction of islands. Deformation rate in both regions is 7.4 and 2.4 cm/year respectively. 2) In the continuation of the plate boundary, along the Gloria Fault until the Iberian continental margin we clearly have right-lateral motion in the E-W direction with a deformation rate of 1.8 cm/year. 3) The Eastern part of the Plate boundary, in Portugal continental, is very complex, however we identify some important patterns in the following regions: western Iberian margin (strike-slip), Lisboa and Vale do Tejo (dip-slip), ...vora and vicinity (strike-slip), region of Algarve (strike-slip) and inter-plates boundary zone (inverse). These regions are affected by compression oriented and a deformation rate of 0,55 cm/year

    Tres poemes

    Get PDF

    Creació poètica

    Get PDF

    The 1980, 1997 and 1998 Azores earthquakes and its seismotectonic implications

    Get PDF
    We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike– slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr
    • …
    corecore