15 research outputs found

    Tools and Technologies Needed for Conducting Planetary Field Geology While On EVA: Insights from the 2010 Desert RATS Geologist Crewmembers

    Get PDF
    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives

    Trajectory Design for the Europa Clipper Mission Concept

    No full text
    Europa is one of the most scientifically intriguing targets in planetary science due to its potential suitability for extant life. As such, NASA has funded the California Institute of Technology Jet Propulsion Laboratory and the Johns Hopkins University Applied Physics Laboratory to jointly determine and develop the best mission concept to explore Europa in the near future. The result of nearly 4 years of work--the Europa Clipper mission concept--is a multiple Europa flyby mission that could efficiently execute a number of high caliber science investigations to meet Europa science priorities specified in the 2011 NRC Decadal Survey, and is capable of providing reconnaissance data to maximize the probability of both a safe landing and access to surface material of high scientific value for a future Europa lander. This paper will focus on the major enabling component for this mission concept--the trajectory. A representative trajectory, referred to as 13F7-A21, would obtain global-regional coverage of Europa via a complex network of 45 flybys over the course of 3.5 years while also mitigating the effects of the harsh Jovian radiation environment. In addition, 5 Ganymede and 9 Callisto flybys would be used to manipulate the trajectory relative to Europa. The tour would reach a maximum Jovicentric inclination of 20.1 deg. have a deterministic (Delta)V of 164 m/s (post periapsis raise maneuver), and a total ionizing dose of 2.8 Mrad (Si)

    Addition of a low altitude Tethys flyby to the nominal Cassini tour

    No full text
    Of the eight Saturnian icy satellites. all but Mimas and Tethys had low altitude targeted flybys during the 4-year primary Cassini spacecraft tour. In November 2004, the existence of a potential low-altitude Tethys flyby was discovered; this low-altitude flyby, added to the nominal tour in March 2005, corresponded to a 1500 km non-targeted periapsis altitude on September 24, 2005 with an associated (delta)v cost of approximately 8 mis. This memo details the methods used to determine the Rev-15 non-targeted Tethys flyby altitude, driven by navigational requirements and operational constraints, in addition to several trajectory modifications implemented to reduce total (delta)v costs, and in some cases. render simultaneous increases in scientific return

    EUROPA Multiple-Flyby Trajectory Design

    No full text
    As reinforced by the 2011 NRC Decadal Survey, Europa remains one of the most scientifically intriguing targets in planetary science due to its potential suitability for life. However, based on JEO cost estimates and current budgetary constraints, the Decadal Survey recommended-and later directed by NASA Headquarters-a more affordable pathway to Europa exploration be derived. In response, a flyby-only proof-of-concept trajectory has been developed to investigate Europa. The trajectory, enabled by employing a novel combination of new mission design techniques, successfully fulfills a set of Science Definition Team derived scientific objectives carried out by a notional payload including ice penetrating radar, topographic imaging, and short wavelength infrared observations, and ion neutral mass spectrometry in-situ measurements. The current baseline trajectory, referred to as 11-F5, consists of 34 Europa and 9 Ganymede flybys executed over the course of 2.4 years, reached a maximum inclination of 15 degrees, has a deterministic delta v of 157 m/s (post-PJR), and has a total ionizing dose of 2.06 Mrad (Si behind 100 mil Al, spherical shell). The 11-F5 trajectory and more generally speaking, flyby-only trajectories-exhibit a number of potential advantages over an Europa orbiter mission

    Global Moon Coverage via Hyperbolic Flybys

    No full text
    The scientific desire for global coverage of moons such as Jupiter's Galilean moons or Saturn's Titan has invariably led to the design of orbiter missions. These orbiter missions require a large amount of propellant needed to insert into orbit around such small bodies, and for a given launch vehicle, the additional propellant mass takes away from mass that could otherwise be used for scientific instrumentation on a multiple flyby-only mission. This paper will present methods--expanding upon techniques developed for the design of the Cassini prime and extended missions--to obtain near global moon coverage through multiple flybys. Furthermore we will show with proper instrument suite selection, a flyby-only mission can provide science return similar (and in some cases greater) to that of an orbiter mission

    Overview of the Cassini Extended Mission Trajectory

    No full text
    Due to the highly successful execution of the Cassini-Huygens prime mission and the estimated propellant remaining at the conclusion of the prime mission, NASA Headquarters allocated funding for the development of a 2-year long Cassini extended mission. The resultant extended mission, stemming from 1.5 years of development, includes an additional 26 targeted Titan flybys, 9 close flybys of icy satellites, and 60 orbits about Saturn. This paper describes, in detail, the different phases of the Cassini extended mission and the associated design methodology, which attempted to maximize the number and quality of high-priority scientific objectives while minimizing the total delta v expenditure and adhering to mission-imposed constraints

    Jovian Tour Design for Orbiter and Lander Missions to Europa

    No full text
    This paper presents trajectory options for the lander and for the orbiter missions, while the trajectory design for the flyby option was presented in a previous work

    Analysis of Petal Rotation Trajectory Characteristics

    No full text
    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study

    Jovian Tour Design for Orbiter and Lander Missions to Europa

    No full text
    Europa is one of the most interesting targets for solar system exploration, as its ocean of liquid water could harbor life. Following the recommendation of the Planetary Decadal Survey, NASA commissioned a study for a flyby mission, an orbiter mission, and a lander mission. This paper presents the moon tours for the lander and orbiter concepts. The total delta v and radiation dose would be reduced by exploiting multi-body dynamics and avoiding phasing loops in the Ganymede-to- Europa transfer. Tour 11-O3, 12-L1 and 12-L4 are presented in details and their performaces compared to other tours from previous Europa mission studies

    The Europa Mission: Multiple Europa Flyby Trajectory Design Trades and Challenges

    No full text
    With potential sources of water, energy and other chemicals essential for life, Europa is a top candidate for finding current life in our Solar System outside of Earth. This paper describes the current trajectory design concept for a multiple Europa flyby mission and discusses several trajectory design challenges. The candidate reference trajectory utilizes multiple Europa flybys while around Jupiter to enable near global coverage of Europa while balancing science requirements, radiation dose, propellant usage, and flight time. Trajectory design trades and robustness are also discussed
    corecore