12 research outputs found

    Quantum well infrared photodetectors hardiness to the non ideality of the energy band profile

    Full text link
    We report results on the effect of a non-sharp and disordered potential in Quantum Well Infrared Photodetectors (QWIP). Scanning electronic transmission microscopy is used to measure the alloy profile of the structure which is shown to present a gradient of composition along the growth axis. Those measurements are used as inputs to quantify the effect on the detector performance (peak wavelength, spectral broadening and dark current). The influence of the random positioning of the doping is also studied. Finally we demonstrate that QWIP properties are quite robust with regard to the non ideality of the energy band profile

    Photocurrent analysis of quantum cascade detectors by magnetotransport

    Get PDF
    to be published in Phys. Rev. BInternational audiencePhotocurrent measurements have been performed on a quantum cascade detector structure under strong magnetic field B applied parallel to the growth axis. The photocurrent shows oscillations as a function of B. In order to describe this behavior, we have developed a rate equation model. The interpretation of the experimental data supports the idea that an elastic scattering contribution plays a central role in the behavior of these structures. We present a calculation of the electron lifetime versus magnetic field which suggests that impurities scattering in the active region is the limiting factor. These experiments lead to a better understanding of these complex structures and identify key parameters to optimize them further

    Magnetotransport in quantum cascade detectors: analyzing the current under illumination

    Get PDF
    Photocurrent measurements have been performed on a quantum cascade detector structure under strong magnetic field applied parallel to the growth axis. The photocurrent shows oscillations as a function of B. In order to describe that behavior, we have developed a rate equation model. The interpretation of the experimental data supports the idea that an elastic scattering contribution plays a central role in the behavior of those structures. We present a calculation of electron lifetime versus magnetic field which suggests that impurities scattering in the active region is the limiting factor. These experiments lead to a better understanding of these complex structures and give key parameters to optimize them further

    Analyse expérimentale et numérique de l'effet de jeu augmenté sur les instabilités aérodynamiques en compresseur centrifuge à fort taux de pression

    No full text
    La prĂ©sente Ă©tude a pour objectif d’évaluer l’effet de l’augmentation du jeu fonctionnel en tĂȘte d’aube de la roue mobile sur les performances globales et les instabilitĂ©s aĂ©rodynamiques en compresseur centrifuge Ă  fort taux de pression. Pour ce faire, le compresseur TM-Pi9, dĂ©veloppĂ© et produit par Turbomeca, installĂ© sur le banc d’essai 1 MW du Laboratoire de MĂ©canique des Fluides et d’acoustique, a servi de support de recherche. Les mesures de performances globales, associĂ©es Ă  des sondages par anĂ©momĂ©trie LASER Ă  effet Doppler ainsi que des enregistrements de pression instationnaire au carter, sur l’ensemble de l’étage de compression, ont permis d’acquĂ©rir une base de donnĂ©es expĂ©rimentales dans deux configurations de jeu, de la vitesse nominale (Nn) Ă  la vitesse de ralenti (0.6 Nn). Ces rĂ©sultats sont confrontĂ©s et complĂ©tĂ©s par des simulations numĂ©riques stationnaires, instationnaires chorochroniques et 360°, convergĂ©es avec le code elsA dĂ©veloppĂ© par l’ONERA et le CERFACS.À la vitesse de croisiĂšre, l’élargissement du jeu en tĂȘte d’aubage de 6% Ă  10% (taille du jeu au niveau du bord de fuite des aubes rapportĂ©e Ă  la hauteur de veine en sortie de rouet) gĂ©nĂšre une hausse des dĂ©bits de jeu, sensiblement proportionnelle Ă  l’augmentation de l’espace fonctionnel. L’accroissement des dĂ©bits de jeu ne modifie pas la position du sillage de la structure jet-sillage qui reste localisĂ© autour de l’aube intercalaire. Le sillage devient nĂ©anmoins plus large. La modification de gĂ©omĂ©trie engendre principalement une dĂ©gradation du taux de pression de l’étage (~3%), imputable aux pertes non-visqueuses dans le rouet, c’est-Ă -dire une sous-dĂ©viation de l’écoulement imposĂ©e par le jet issu du jeu. L’élargissement de la hauteur de l’espace fonctionnel provoque une baisse du dĂ©bit de blocage, consĂ©quence de la rĂ©duction de la pression statique au niveau du col du diffuseur. Le rendement de l’étage subit expĂ©rimentalement une dĂ©gradation de 1%, au point de fonctionnement rendement maximum et aucune Ă©volution proche pompage. La modification du rendement est soumise Ă  deux effets opposĂ©s. D’une part, l’augmentation des dĂ©bits de jeu provoque plus de pertes visqueuses au sein de l’ensemble des Ă©coulements de jeu. Mais d’autre part, le sillage Ă©tant plus large, les structures tourbillonnaires sont moins confinĂ©es ; en rĂ©sulte une diminution de la vorticitĂ©. L’accumulation d’entropie dans le sillage est ainsi plus faible. Quelles que soient la vitesse de rotation et la configuration de jeu, le pompage est initiĂ© de maniĂšre brutale dans le diffuseur aubĂ© par un dĂ©collement de couches limites sur la face en dĂ©pression des aubages, proche du moyeu. Cette sĂ©paration rĂ©sulte de l’interaction entre la couche limite de coin et l’onde de choc dĂ©tachĂ©e du bord d’attaque des aubes du diffuseur. À faible vitesse de rotation et petit dĂ©bit, une instabilitĂ© aĂ©rodynamique affecte l’inducteur du rouet (zone situĂ©e entre le bord d’attaque des aubes principales et le bord d’attaque des aubes intercalaires). Elle peut ĂȘtre associĂ©e Ă  une « instabilitĂ© tournante du tourbillon de jeu » qui est induite par une surincidence de l’écoulement sur les aubes principales du rouet. Il s’agit d’un phĂ©nomĂšne de mild-stall prĂ©curseur d’un dĂ©collement tournant progressif dans le rouet. Ce dernier n’est cependant pas enregistrĂ© car le diffuseur induit le pompage Ă  dĂ©bit plus important. Des systĂšmes de contrĂŽle d’écoulement dans le diffuseur et dans le rouet sont alors proposĂ©s, afin d’élargir la plage de fonctionnement du compresseur.This present study is focused on the effect of the impeller blades tip clearance increase on the overall performance and aerodynamic instabilities in high-pressure centrifugal compressor. The test case is a centrifugal compressor stage (TM-Pi9) designed and built by Turbomeca which is used in a helicopter engine. The compressor stage is mounted on the 1 MW test rig of the Laboratoire de MĂ©canique des Fluides et d’Acoustique at the Ecole Centrale de Lyon in France. Experimental investigations consist in the overall performance acquisitions, LASER Doppler Anemometry measurements and unsteady pressure measurements up to 150 KHz for two tip clearance configurations from the nominal rotation speed to 60% of the nominal rotation speed. Steady and unsteady (phase-lagged and full simulations) simulations are also performed using the elsA code developed by the ONERA and CERFACS. Two tip clearances are tested. In the first case used as reference, the tip gap represents 6% of the section height at the impeller exit. In the second case, the impeller is moved axially, which results in an increased tip gap essentially in the radial part of the impeller. Thus in the second case, the tip clearance at the impeller exit corresponds to 10% of the section height. At the cruise rotation speed, from the reference to the increased tip clearance configurations, the tip leakage mass flows are increased. The tip leakage mass flow increase is quasi-proportional to the tip clearance height enlargement. But the position of the wake of the jet-wake flow pattern is not affected by the modification of the tip leakage mass flows. However the wake becomes wider. The tip clearance modification mainly deteriorates the total-to-static pressure ratio (~3%),which is due to inviscid losses in the impeller (under-deviation of the flow near the blades tip). A lower choking mass flow is reached in the increased tip clearance case compared with the reference configuration, due to the static pressure drop at the diffuser throat. The isentropic stage efficiency is experimentally decreased by 1% at the peak efficiency operating point. Near surge, no change in the stage efficiency is measured. From the reference to the increased tip clearance configurations, the stage efficiency is, in fact, subject to two opposite effects. On the one hand, higher tip leakage mass flows cause more viscous losses in the tip leakages and vortices. On the other hand, the wake of the jet-wake flow pattern being wider, the vortices are less confined, resulting in a decrease of the vorticity. The accumulation of entropy in the wake is thus weaker. Whatever the tip clearance configuration and the rotation speed, the surge is triggered by a boundary layer separation near the hub on the suction side of the diffuser vanes. This separation is due to the interaction between the corner boundary layer and the shock wave detached from the leading edge of diffuser vanes. At low rotation speed, disturbances in the inducer (between the leading edge of the main blade and the leading edge of the splitter blade) were recorded. These disturbances can be associated to “rotating tip clearance disturbances” which are generated by the over-flow-incidence on the impeller main blades. This phenomenon is a mild-stall precursor of a rotating stall in the impeller. The rotating stall in the impeller is not recorded because the surge occurs in the diffuser at higher mass flow. Active and passive flow control systems in the diffuser and the impeller are proposed in order to increase the operating range of the TM-Pi9 compressor

    Instabilités aérodynamiques en compresseur centrifuge transsonique

    No full text
    La tendance actuelle de conception des compresseurs pour des applications aĂ©ronautiques conduit Ă  dessiner des machines compactes, Ă  fort rendement et grande plage de fonctionnement. Pour des compresseurs Ă  fort taux de pression et grande vitesse de rotation, la plage de fonctionnement est restreinte par le blocage sonique pour les grands dĂ©bits et par la limite de stabilitĂ© aĂ©rodynamique pour les petits dĂ©bits. Une zone de sĂ©curitĂ© connue sous le terme de ‘marge au pompage’ est alors imposĂ©e pour empĂȘcher le fonctionnement du compresseur Ă  proximitĂ© des instabilitĂ©s. Or c’est gĂ©nĂ©ralement dans cette zone interdite que le compresseur prĂ©sente ses meilleures performances aĂ©rodynamiques en terme de taux de pression et rendement. Comprendre la cause des instabilitĂ©s et les prĂ©dire est ainsi un enjeu primordial. Le dĂ©clenchement des instabilitĂ©s est trĂšs dĂ©pendant du type de compresseur (axial ou centrifuge), du taux de pression ou de la vitesse de rotation ; et aucune mĂ©thode n’est Ă  l’heure actuelle prĂ©dictive. La prĂ©sente contribution prĂ©sente l’analyse du dĂ©clenchement des instabilitĂ©s dans un compresseur centrifuge transsonique pour diffĂ©rentes vitesses de rotation. Cette analyse a Ă©tĂ© menĂ©e Ă  partir de rĂ©sultats expĂ©rimentaux obtenus grĂące Ă  des capteurs de pression rapides implantĂ©s au carter dans la partie inductrice du rouet, dans le diffuseur lisse et dans le diffuseur aubĂ©. Quelle que soit la vitesse de rotation, la rupture aĂ©rodynamique du systĂšme de compression rĂ©sulte d’un pompage de type profond sans prĂ©curseur, initiĂ© dans le diffuseur par un dĂ©collement massif des couches limites. Pour les faibles vitesses de rotation, conjointement au pompage qui reste dĂ©clenchĂ© dans le diffuseur, des instabilitĂ©s aĂ©rodynamiques sont enregistrĂ©es dans l’inducteur du rouet. Ces instabilitĂ©s tournantes et associĂ©es au tourbillon de jeu sont induites par une sur-incidence sur les aubes principales du rouet

    Detailed analysis of the flow in the inducer of a transonic centrifugal compressor

    No full text
    International audienc

    Aerodynamic instabilities in transonic centrifugal compressor

    No full text
    International audienceThis paper presents the analysis of the instabilities inception in a transonic centrifugal com-pressor for different rotation speeds. The analysis was conducted from experimental results obtained with unsteady pressure sensors implanted in the inducer, vaneless diffuser and vaned diffuser. Beyond the stability limit the compressor enters into a deep surge without any precursor, whatever the speed. The surge process is initiated in the vaned diffuser by a massive boundary layer separation. For low speeds, together with the surge which remains triggered in the diffuser, aerodynamic instabilities are detected in the inducer. These instabilities can be understood as “tip clearance rotating disturbances” because they are generated at the leading edge of the impeller main blades and move along the tip clearance trajectory

    Full-Annulus Simulation of the Surge Inception in a Transonic Centrifugal Compressor

    No full text
    International audienceno abstrac

    Trapped Acoustic Modes in an Axial Multi-Stage Compressor Leading to Non-Synchronous Blade Vibrations

    No full text
    Non-synchronous blade vibrations have been observed in an experimental multi-stage high-speed compressor setup at part-speed conditions. A detailed numerical study has been carried out to understand the observed phenomenon by performing unsteady full-annulus Reynolds-Averaged Navier–Stokes (RANS) simulations of the whole setup using the solver elsA. Several operating conditions have been simulated to observe this kind of phenomena along a speedline of interest. Based on the simulation results, the physical source of the non-synchronous blade vibration is identified: An aerodynamic disturbance appears in a highly loaded downstream rotor and excites a spinning acoustic mode. A “lock-in” phenomenon occurs between the blade boundary layer oscillations and the spinning acoustic mode. The establishment of axially propagating acoustic waves can lead to a complex coupling mechanism and this phenomenon is highly relevant in understanding the multi-physical interactions appearing in modern compressors. It is shown that aerodynamic disturbances occurring downstream can lead to critical excitation of rotor blades in upstream stages due to an axially propagating acoustic wave. The paper includes the analysis of a relevant transient test and a detailed analysis of the numerical results. The study shows the capability and necessity of a full-annulus multistage simulation to understand the phenomenon
    corecore