6 research outputs found

    L-2-hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats

    No full text
    l-2-Hydroxyglutaric acid (LGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as l-2-hydroxyglutaric aciduria (LHGA). Although this disorder is predominantly characterized by severe neurological findings and pronounced cerebellum atrophy, the neurotoxic mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA, at 0.25–5 mM concentrations, on total creatine kinase (tCK) activity from cerebellum, cerebral cortex, cardiac muscle and skeletal muscle homogenates of 30-day-old Wistar rats. CK activity was measured also in the cytosolic (Cy-CK) and mitochondrial (Mi-CK) fractions from cerebellum. We verified that tCK activity was significantly inhibited by LGA in the cerebellum, but not in cerebral cortex, cardiac muscle and skeletal muscle. Furthermore, CK activity from the mitochondrial fraction was inhibited by LGA, whereas that from the cytosolic fraction of cerebellum was not affected by the acid. Kinetic studies revealed that the inhibitory effect of LGA on Mi-CK was non-competitive in relation to phosphocreatine. Finally, we verified that the inhibitory effect of LGA on tCK was fully prevented by pre-incubation of the homogenates with reduced glutathione (GSH), suggesting that this inhibition is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of creatine kinase activity for energy homeostasis, our results suggest that the selective inhibition of this enzyme activity by increased levels of LGA could be possibly related to the cerebellar degeneration characteristically found in patients affected by l-2-hydroxyglutaric aciduria

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore