123 research outputs found

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO^- state.Comment: Revtex file + postscript file for one figur

    Towards the electron EDM search. Theoretical study of PbF

    Full text link
    We report ab initio relativistic correlation calculations of potential curves and spectroscopic constants for four lowest-lying electronic states of the lead monofluoride. We also calculated parameters of the spin-rotational Hamiltonian for the ground and the first excited states including P,T-odd and P-odd terms. In particular, we have obtained hyperfine constants of the 207^{207}Pb nucleus. For the 2Π1/2^2\Pi_{1/2} state A=6859.6A_\perp=-6859.6 MHz, A=9726.9A_\|=9726.9 MHz and for the A2Σ1/2+^2\Sigma^+_{1/2} A=1720.8A_\perp=1720.8 MHz, A=3073.3A_\|=3073.3 MHz. Our values of the ground state hyperfine constants are in good agreement with the previous theoretical studies. We discuss and explain seeming disagreement in the sign of the constant AA_\perp with the recent experimental data. The effective electric field on the electron EeffE_{eff}, which is important for the planned experiment to search for the electric dipole moment of the electron, is found to be 3.3 * 10^{10} V/cm

    Towards the electron EDM search: Theoretical study of HfF+

    Get PDF
    We report first ab initio relativistic correlation calculations of potential curves for ten low-lying electronic states, effective electric field on the electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy transition metal fluoride, HfF^+, that is suggested to be used as the working state in experiments to search for the electric dipole moment of the electron. It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the relatively long-lived first excited state lying about 0.2 eV higher. The calculated effective electric field E_eff=W_d|\Omega| acting on an electron in this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page

    Configuration interaction calculation of hyperfine and P,T-odd constants on ^{207}PbO excited states for the electron EDM experiments

    Full text link
    We report first configuration interaction calculations of hyperfine constants A_\parallel and the effective electric field W_d acting on the electric dipole moment of the electron, in two excited electronic states of ^{207}PbO. The obtained hyperfine constants, A_\parallel = -3826 MHz for the a(1) state and A_\parallel = 4887 MHz for the B(1) state, are in very good agreement with the experimental data, -4113 MHz and 5000 \pm 200 MHz, respectively. We find W_d = -(6.1 ^{+1.8}_{-0.6}) 10^{24} Hz/(e cm) for a(1), and W_d = (8.0 \pm 1.6) 10^{24} Hz/(e cm) for B(1). The obtained values are analyzed and compared to recent relativistic coupled cluster results and a semiempirical estimate of W_d for the a(1) state.Comment: 6 pages, REVTeX4 style, submitted to Pthys.Rev.

    Variational Hilbert space truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters

    Full text link
    We study the spin-12\frac{1}{2} Heisenberg antiferromagnet on a series of finite-size clusters with features inspired by the fullerenes. Frustration due to the presence of pentagonal rings makes such structures challenging in the context of quantum Monte-Carlo methods. We use an exact diagonalization approach combined with a truncation method in which only the most important basis states of the Hilbert space are retained. We describe an efficient variational method for finding an optimal truncation of a given size which minimizes the error in the ground state energy. Ground state energies and spin-spin correlations are obtained for clusters with up to thirty-two sites without the need to restrict the symmetry of the structures. The results are compared to full-space calculations and to unfrustrated structures based on the honeycomb lattice.Comment: 22 pages and 12 Postscript figure

    Theory of excited state absorptions in phenylene-based π\pi-conjugated polymers

    Full text link
    Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon Ag_g states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur Ag_g states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mAg_g). In addition to the above class of Ag_g states, PA can also occur to a higher energy kAg_g state whose 2e--2h component is {\em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mAg_g and the kAg_g agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kAg_g that leads to charge generation subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page

    Dissociation dynamics of diatomic molecules in intense laser fields: a scheme for the selection of relevant adiabatic potential curves

    Get PDF
    We investigated the nuclear dynamics of diatomic molecular ions in intense laser fields by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay τ . Within the Born-Oppenheimer (BO) approximation, we calculated ab initio adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS. By comparing simulated KER spectra as a function of either τ or the vibrational quantum-beat frequency for the nuclear dynamics on both individual and dipole-coupled BO potential curves with measured spectra, we developed a scheme for identifying electronic states that are relevant for the dissociation dynamics. We applied this scheme to investigate the nuclear dynamics in O[subscript 2][superscript +] ions that are produced by ionization of neutral O[subscript 2] molecules in an ultrashort infrared (IR) pump pulse and dissociate due to the dipole coupling of molecular potential curves in a delayed IR probe laser field
    corecore